These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32225210)

  • 1. Liquid-level sensing method based on differential pulse-width pair Brillouin optical time-domain analysis and a self-heated high attenuation fiber.
    Zhang H; Cheng Y; Wu K; Yuan Z; Dong Y
    Appl Opt; 2020 Jan; 59(3):795-799. PubMed ID: 32225210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributed Airflow Sensing Based on High-Spatial-Resolution BOTDA and a Self-Heated High-Attenuation Fiber.
    Zhang H; Lei Y; Zhou J; Dong Y
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair.
    Dong Y; Zhang H; Chen L; Bao X
    Appl Opt; 2012 Mar; 51(9):1229-35. PubMed ID: 22441465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum.
    Diakaridia S; Pan Y; Xu P; Zhou D; Wang B; Teng L; Lu Z; Ba D; Dong Y
    Opt Express; 2017 Jul; 25(15):17727-17736. PubMed ID: 28789264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential pulse-width pair BOTDA for high spatial resolution sensing.
    Li W; Bao X; Li Y; Chen L
    Opt Express; 2008 Dec; 16(26):21616-25. PubMed ID: 19104593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor.
    Dong Y; Bao X; Li W
    Appl Opt; 2009 Aug; 48(22):4297-301. PubMed ID: 19649031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Crack Detection Using DPP-BOTDA and Crack-Induced Features of the Brillouin Gain Spectrum.
    Zhang D; Yang Y; Xu J; Ni L; Li H
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33291780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses.
    Liang H; Li W; Linze N; Chen L; Bao X
    Opt Lett; 2010 May; 35(10):1503-5. PubMed ID: 20479789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification.
    Soto MA; Taki M; Bolognini G; Di Pasquale F
    Opt Express; 2012 Mar; 20(7):6860-9. PubMed ID: 22453363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centimeter-level spatial resolution Brillouin optical time domain analyzer using mono-pulse self-difference.
    Zhang Q; Wang T; Li J; Wang Y; Liu J; Zhang M
    Opt Lett; 2022 Oct; 47(19):5008-5011. PubMed ID: 36181173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing.
    Guo N; Wang L; Wang J; Jin C; Tam HY; Zhang AP; Lu C
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online distributed strain measurement of fiber Michelson hydrophones based on DPP-BOTDA with a pulsed-probe wave.
    Jiang T; Ba D; Dong Y
    Opt Express; 2019 Aug; 27(16):22375-22384. PubMed ID: 31510532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification.
    Kim YH; Song KY
    Opt Express; 2017 Jun; 25(13):14098-14105. PubMed ID: 28788995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subdivision of Brillouin gain spectrum to improve the spatial resolution of a BOTDA system.
    Chao J; Wen X; Zhu W; Min L; Lv H; Kai S
    Appl Opt; 2019 Jan; 58(2):466-472. PubMed ID: 30645329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of centimeter-level length changes using the intensity of probe light in BOTDA.
    Chen H; Wang T; Zhang Q; Liu J; Peng J; Ge X; Zhang J; Zhang M
    Opt Express; 2022 Nov; 30(23):41898-41910. PubMed ID: 36366654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brillouin gain bandwidth reduction in Brillouin optical time domain analyzers.
    Lin W; Yang Z; Hong X; Wang S; Wu J
    Opt Express; 2017 Apr; 25(7):7604-7615. PubMed ID: 28380880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-comb-based BOTDA sensors for high-spatial-resolution/long-distance sensing.
    Jia XH; Chang HQ; Lin K; Xu C; Wu JG
    Opt Express; 2017 Mar; 25(6):6997-7007. PubMed ID: 28381041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. System optimization of a long-range Brillouin-loss-based distributed fiber sensor.
    Dong Y; Chen L; Bao X
    Appl Opt; 2010 Sep; 49(27):5020-5. PubMed ID: 20856273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km.
    Angulo-Vinuesa X; Martin-Lopez S; Corredera P; Gonzalez-Herraez M
    Opt Express; 2012 May; 20(11):12147-54. PubMed ID: 22714201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed temperature and strain discrimination with stimulated brillouin scattering and rayleigh backscatter in an optical fiber.
    Zhou DP; Li W; Chen L; Bao X
    Sensors (Basel); 2013 Jan; 13(2):1836-45. PubMed ID: 23385406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.