BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32225239)

  • 1. Isosbestic light absorption by metallic dimers: effect of interparticle electromagnetic coupling.
    Ma LX; Wang CC
    Appl Opt; 2020 Feb; 59(4):1028-1036. PubMed ID: 32225239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromagnetically Induced Absorption Overcomes the Upper Limit of Light Absorption: Dipole-Dipole Coupling with Phase Retardation in Plasmonic-Dielectric Dimers.
    Matsumori K; Fujimura R; Retsch M
    J Phys Chem C Nanomater Interfaces; 2023 Sep; 127(38):19127-19140. PubMed ID: 37791102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods.
    Auguié B; Alonso-Gómez JL; Guerrero-Martínez A; Liz-Marzán LM
    J Phys Chem Lett; 2011 Apr; 2(8):846-51. PubMed ID: 26295617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New coupling mechanism of titanium nitride nanosphere dimers at short separation distances.
    Cao P; Chen H; Liang M; Dou J; Cheng L
    Nanotechnology; 2019 Aug; 30(33):335204. PubMed ID: 31035275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight on the Coupling of Plasmonic Nanoparticles from Near-Field Spectra Determined via Discrete Dipole Approximations.
    Barr JW; Gomrok S; Chaffin E; Huang X; Wang Y
    J Phys Chem C Nanomater Interfaces; 2021 Mar; 125(9):5260-5268. PubMed ID: 34367408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers.
    Romero I; Aizpurua J; Bryant GW; García De Abajo FJ
    Opt Express; 2006 Oct; 14(21):9988-99. PubMed ID: 19529393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-directed gold nanodimers with tunable sizes and interparticle distances and their surface plasmonic properties.
    Lan X; Chen Z; Liu BJ; Ren B; Henzie J; Wang Q
    Small; 2013 Jul; 9(13):2308-15. PubMed ID: 23401271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas.
    Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E
    Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep strong light-matter coupling in plasmonic nanoparticle crystals.
    Mueller NS; Okamura Y; Vieira BGM; Juergensen S; Lange H; Barros EB; Schulz F; Reich S
    Nature; 2020 Jul; 583(7818):780-784. PubMed ID: 32728238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the plasmonic optical properties of cubic silver nanostructures based on Fano resonance.
    Yang Z; Wang M; Song X; Deng J; Yao X
    J Chem Phys; 2013 Oct; 139(16):164713. PubMed ID: 24182070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant optical activity from the radiative electromagnetic interactions in plasmonic nanoantennas.
    Wang P; Chen L; Wang R; Ji Y; Zhai D; Wu X; Liu Y; Chen K; Xu H
    Nanoscale; 2013 May; 5(9):3889-94. PubMed ID: 23529607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions.
    Gunnarsson L; Rindzevicius T; Prikulis J; Kasemo B; Käll M; Zou S; Schatz GC
    J Phys Chem B; 2005 Jan; 109(3):1079-87. PubMed ID: 16851063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong dipole-quadrupole coupling and Fano resonance in H-like metallic nanostructures.
    Gonçalves MR; Melikyan A; Minassian H; Makaryan T; Marti O
    Opt Express; 2014 Oct; 22(20):24516-29. PubMed ID: 25322027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin and Orbital Rotation of Plasmonic Dimer Driven by Circularly Polarized Light.
    Liaw JW; Huang MC; Chao HY; Kuo MK
    Nanoscale Res Lett; 2018 Oct; 13(1):322. PubMed ID: 30315377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing plasmonic nanoantennas via coordinated multiple coupling.
    Lin L; Zheng Y
    Sci Rep; 2015 Oct; 5():14788. PubMed ID: 26423015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range.
    Cha H; Yoon JH; Yoon S
    ACS Nano; 2014 Aug; 8(8):8554-63. PubMed ID: 25089844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers.
    Nome RA; Guffey MJ; Scherer NF; Gray SK
    J Phys Chem A; 2009 Apr; 113(16):4408-15. PubMed ID: 19267445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations.
    Wang H
    Sci Rep; 2018 Jun; 8(1):9589. PubMed ID: 29941992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas.
    Yang L; Wang H; Fang Y; Li Z
    ACS Nano; 2016 Jan; 10(1):1580-8. PubMed ID: 26700823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.