These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32225330)

  • 21. Micromachining of Alumina Using a High-Power Ultrashort-Pulsed Laser.
    Rung S; Häcker N; Hellmann R
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-speed camera imaging for laser ablation process: for further reliable elemental analysis using inductively coupled plasma-mass spectrometry.
    Hirata T; Miyazaki Z
    Anal Chem; 2007 Jan; 79(1):147-52. PubMed ID: 17194132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic and molecular beams.
    Irimia D; Dobrikov D; Kortekaas R; Voet H; van den Ende DA; Groen WA; Janssen MH
    Rev Sci Instrum; 2009 Nov; 80(11):113303. PubMed ID: 19947724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrashort single-pulse laser ablation of stainless steel, aluminium, copper and its dependence on the pulse duration.
    Winter J; Spellauge M; Hermann J; Eulenkamp C; Huber HP; Schmidt M
    Opt Express; 2021 May; 29(10):14561-14581. PubMed ID: 33985177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrashort pulse laser ossicular ablation and stapedotomy in cadaveric bone.
    Armstrong WB; Neev JA; Da Silva LB; Rubenchik AM; Stuart BC
    Lasers Surg Med; 2002; 30(3):216-20. PubMed ID: 11891741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction Energy Dependency on Pulse Width in ns NIR Laser Scanning of Silicon.
    Li S; Wang X; Chen G; Wang Z
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase-matching-free ultrashort laser pulse characterization from a transient plasma lens.
    Bhalavi RK; Béjot P; Leblanc A; Dubrouil A; Billard F; Faucher O; Hertz E
    Opt Lett; 2024 Mar; 49(5):1321-1324. PubMed ID: 38427003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental study on the laser-matter-plume interaction and its effects on ablation characteristics during nanosecond pulsed laser scanning ablation process.
    Yuan J; Liang L; Lin G; Li X; Jiang M
    Opt Express; 2019 Aug; 27(16):23204-23216. PubMed ID: 31510603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time energy measurement of high repetition rate ultrashort laser pulses using pulse integration and FPGA processing.
    Tang QJ; Yang DX; Wang J; Feng Y; Zhang HF; Chen TY
    Rev Sci Instrum; 2016 Nov; 87(11):114708. PubMed ID: 27910641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-resolved microscopy reveals the driving mechanism of particle formation during ultrashort pulse laser ablation of dentin-like ivory.
    Domke M; Gavrilova A; Rapp S; Frentzen M; Meister J; Huber HP
    J Biomed Opt; 2015 Jul; 20(7):76005. PubMed ID: 26172613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-speed photography of excimer laser ablation of the cornea.
    Puliafito CA; Stern D; Krueger RR; Mandel ER
    Arch Ophthalmol; 1987 Sep; 105(9):1255-9. PubMed ID: 3632443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Femtosecond laser ablation by bibursts in the MHz and GHz pulse repetition rates.
    Žemaitis A; Gaidys M; Gečys P; Barkauskas M; Gedvilas M
    Opt Express; 2021 Mar; 29(5):7641-7653. PubMed ID: 33726261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea.
    Bor Z; Hopp B; Rácz B; Szabó G; Ratkay I; Süveges I; Füst A; Mohay J
    Refract Corneal Surg; 1993; 9(2 Suppl):S111-5. PubMed ID: 8499358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of Periodic Nanoridge Patterns by Ultrashort Single Pulse UV Laser Irradiation of Gold.
    Blumenstein A; Garcia ME; Rethfeld B; Simon P; Ihlemann J; Ivanov DS
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33050420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum.
    Zhang N; Zhu X; Yang J; Wang X; Wang M
    Phys Rev Lett; 2007 Oct; 99(16):167602. PubMed ID: 17995294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation.
    Qian Z; Covarrubias A; Grindal AW; Akens MK; Lilge L; Marjoribanks RS
    Biomed Opt Express; 2016 Jun; 7(6):2331-41. PubMed ID: 27375948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid and conservative ablation and modification of enamel, dentin, and alveolar bone using a high repetition rate transverse excited atmospheric pressure CO2 laser operating at lambda=9.3 micro.
    Fan K; Bell P; Fried D
    J Biomed Opt; 2006; 11(6):064008. PubMed ID: 17212531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the time interval of plasma generation for a high repetition rate laser ion source.
    Kashiwagi H; Yamada K
    Rev Sci Instrum; 2020 Mar; 91(3):033305. PubMed ID: 32259964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits.
    Framme C; Schuele G; Roider J; Kracht D; Birngruber R; Brinkmann R
    Ophthalmic Surg Lasers; 2002; 33(5):400-9. PubMed ID: 12358294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser.
    Fried D; Featherstone JD; Le CQ; Fan K
    Lasers Surg Med; 2006 Oct; 38(9):837-45. PubMed ID: 17044095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.