BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32225421)

  • 21. Millimeter-scale chip-based supercontinuum generation for optical coherence tomography.
    Ji X; Mojahed D; Okawachi Y; Gaeta AL; Hendon CP; Lipson M
    Sci Adv; 2021 Sep; 7(38):eabg8869. PubMed ID: 34533990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single all-fiber-based nanosecond-pulsed supercontinuum source for multispectral photoacoustic microscopy and optical coherence tomography.
    Shu X; Bondu M; Dong B; Podoleanu A; Leick L; Zhang HF
    Opt Lett; 2016 Jun; 41(12):2743-6. PubMed ID: 27304278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrahigh-resolution optical coherence tomography/angiography with an economic and compact supercontinuum laser.
    Wang TA; Chan MC; Lee HC; Lee CY; Tsai MT
    Biomed Opt Express; 2019 Nov; 10(11):5687-5702. PubMed ID: 31799040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fourier transform spectrometer based on high-repetition-rate mid-infrared supercontinuum sources for trace gas detection.
    Abbas MA; Jahromi KE; Nematollahi M; Krebbers R; Liu N; Woyessa G; Bang O; Huot L; Harren FJM; Khodabakhsh A
    Opt Express; 2021 Jul; 29(14):22315-22330. PubMed ID: 34265999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using a supercontinuum.
    Mikkonen T; Amiot C; Aalto A; Patokoski K; Genty G; Toivonen J
    Opt Lett; 2018 Oct; 43(20):5094-5097. PubMed ID: 30320828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-resolution simultaneous dual-band spectral domain optical coherence tomography.
    Kray S; Spöler F; Först M; Kurz H
    Opt Lett; 2009 Jul; 34(13):1970-2. PubMed ID: 19571969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coherent mid-infrared supercontinuum generation in tapered suspended-core As
    Leonov SO; Wang Y; Shiryaev VS; Snopatin GE; Stepanov BS; Plotnichenko VG; Vicentini E; Gambetta A; Coluccelli N; Svelto C; Laporta P; Galzerano G
    Opt Lett; 2020 Mar; 45(6):1346-1349. PubMed ID: 32163962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mid-infrared supercontinuum-based upconversion detection for trace gas sensing.
    Jahromi KE; Pan Q; Høgstedt L; Friis SMM; Khodabakhsh A; Moselund PM; Harren FJM
    Opt Express; 2019 Aug; 27(17):24469-24480. PubMed ID: 31510335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical coherence hyperspectral microscopy with a single supercontinuum light source.
    Chen W; Chen Z; Xing D
    J Biophotonics; 2021 Aug; 14(8):e202000491. PubMed ID: 34004076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal operational conditions for supercontinuum-based ultrahigh-resolution endoscopic OCT imaging.
    Yuan W; Mavadia-Shukla J; Xi J; Liang W; Yu X; Yu S; Li X
    Opt Lett; 2016 Jan; 41(2):250-3. PubMed ID: 26766686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode.
    Goncharov VV; Hall GE
    J Chem Phys; 2016 Aug; 145(8):084201. PubMed ID: 27586915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-speed and high-sensitivity parallel spectral-domain optical coherence tomography using a supercontinuum light source.
    Barrick J; Doblas A; Gardner MR; Sears PR; Ostrowski LE; Oldenburg AL
    Opt Lett; 2016 Dec; 41(24):5620-5623. PubMed ID: 27973473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noise characterization of supercontinuum sources for low-coherence interferometry applications.
    Brown WJ; Kim S; Wax A
    J Opt Soc Am A Opt Image Sci Vis; 2014 Dec; 31(12):2703-10. PubMed ID: 25606759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging.
    Yamanaka M; Teranishi T; Kawagoe H; Nishizawa N
    Sci Rep; 2016 Aug; 6():31715. PubMed ID: 27546517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Research on Spectrum Radiation Characteristics of a New Type Infrared/ Ultraviolet Dual Color Decoy].
    Chen CS; Dai MY; Liu HF; Xie CY; Zhang T; Fang GF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1824-9. PubMed ID: 26717733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous dual-wavelength-band common-path swept-source optical coherence tomography with single polygon mirror scanner.
    Mao Y; Chang S; Murdock E; Flueraru C
    Opt Lett; 2011 Jun; 36(11):1990-2. PubMed ID: 21633425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visible light sensorless adaptive optics for retinal structure and fluorescence imaging.
    Ju MJ; Huang C; Wahl DJ; Jian Y; Sarunic MV
    Opt Lett; 2018 Oct; 43(20):5162-5165. PubMed ID: 30320845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iterative re-weighted approach to high-resolution optical coherence tomography with narrow-band sources.
    Mousavi M; Duan L; Javidi T; Ellerbee Bowden AK
    Opt Express; 2016 Jan; 24(2):1781-93. PubMed ID: 26832556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Video-rate centimeter-range optical coherence tomography based on dual optical frequency combs by electro-optic modulators.
    Kang J; Feng P; Li B; Zhang C; Wei X; Lam EY; Tsia KK; Wong KKY
    Opt Express; 2018 Sep; 26(19):24928-24939. PubMed ID: 30469601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.