BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32225421)

  • 41. Fourier transform spectrometry with a near-infrared supercontinuum source.
    Michaels CA; Masiello T; Chu PM
    Appl Spectrosc; 2009 May; 63(5):538-43. PubMed ID: 19470210
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography.
    Marchand PJ; Bouwens A; Szlag D; Nguyen D; Descloux A; Sison M; Coquoz S; Extermann J; Lasser T
    Biomed Opt Express; 2017 Jul; 8(7):3343-3359. PubMed ID: 28717571
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anterior segment imaging: Fourier-domain optical coherence tomography versus time-domain optical coherence tomography.
    Wylegała E; Teper S; Nowińska AK; Milka M; Dobrowolski D
    J Cataract Refract Surg; 2009 Aug; 35(8):1410-4. PubMed ID: 19631129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s.
    Choi D; Hiro-Oka H; Furukawa H; Yoshimura R; Nakanishi M; Shimizu K; Ohbayashi K
    Opt Lett; 2008 Jun; 33(12):1318-20. PubMed ID: 18552944
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mid-infrared optical coherence tomography.
    Colley CS; Hebden JC; Delpy DT; Cambrey AD; Brown RA; Zibik EA; Ng WH; Wilson LR; Cockburn JW
    Rev Sci Instrum; 2007 Dec; 78(12):123108. PubMed ID: 18163721
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Noise reduction in supercontinuum sources for OCT by single-pulse spectral normalization.
    Niemeier RC; Simmons ZJ; Rogers JD
    Appl Opt; 2020 Jun; 59(18):5521-5526. PubMed ID: 36926458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interleaved optical coherence tomography.
    Lee HY; Sudkamp H; Marvdashti T; Ellerbee AK
    Opt Express; 2013 Nov; 21(22):26542-56. PubMed ID: 24216876
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers.
    Rakich PT; Fink Y; Soljacić M
    Opt Lett; 2008 Aug; 33(15):1690-2. PubMed ID: 18670505
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simultaneous dual-band ultra-high resolution full-field optical coherence tomography.
    Sacchet D; Moreau J; Georges P; Dubois A
    Opt Express; 2008 Nov; 16(24):19434-46. PubMed ID: 19030031
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue.
    Böhringer HJ; Boller D; Leppert J; Knopp U; Lankenau E; Reusche E; Hüttmann G; Giese A
    Lasers Surg Med; 2006 Jul; 38(6):588-97. PubMed ID: 16736504
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of beat noise in limiting the sensitivity of optical coherence tomography.
    Haskell RC; Liao D; Pivonka AE; Bell TL; Haberle BR; Hoeling BM; Petersen DC
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2747-55. PubMed ID: 17047700
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compact Er:Yb:glass-laser-based supercontinuum source for high-resolution optical coherence tomography.
    Stumpf MC; Zeller SC; Schlatter A; Okuno T; Südmeyer T; Keller U
    Opt Express; 2008 Jul; 16(14):10572-9. PubMed ID: 18607472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Broadband supercontinuum generation covering UV to mid-IR region by using three pumping sources in single crystal sapphire fiber.
    Kim JH; Chen MK; Yang CE; Lee J; Shi K; Liu Z; Yin SS; Reichard K; Ruffin P; Edwards E; Brantley C; Luo C
    Opt Express; 2008 Sep; 16(19):14792-800. PubMed ID: 18795016
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization of dual-band continuum light source for ultrahigh-resolution optical coherence tomography.
    Wang H; Rollins AM
    Appl Opt; 2007 Apr; 46(10):1787-94. PubMed ID: 17356623
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.
    Wojtkowski M; Srinivasan V; Ko T; Fujimoto J; Kowalczyk A; Duker J
    Opt Express; 2004 May; 12(11):2404-22. PubMed ID: 19475077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units.
    Li J; Bloch P; Xu J; Sarunic MV; Shannon L
    Appl Opt; 2011 May; 50(13):1832-8. PubMed ID: 21532660
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spectral phase based k-domain interpolation for uniform sampling in swept-source optical coherence tomography.
    Wu T; Ding Z; Wang L; Chen M
    Opt Express; 2011 Sep; 19(19):18430-9. PubMed ID: 21935211
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biological applications of synchrotron radiation infrared spectromicroscopy.
    Marcelli A; Cricenti A; Kwiatek WM; Petibois C
    Biotechnol Adv; 2012; 30(6):1390-404. PubMed ID: 22401782
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser.
    Klimczak M; Soboń G; Kasztelanic R; Abramski KM; Buczyński R
    Sci Rep; 2016 Jan; 6():19284. PubMed ID: 26759188
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of effective noise bandwidth for broadband optical coherence tomography operation.
    Cernat R; Dobre GM; Bradu A; Podoleanu AG
    J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):723-31. PubMed ID: 19340245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.