These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32225421)

  • 61. Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography.
    Maria M; Bravo Gonzalo I; Feuchter T; Denninger M; Moselund PM; Leick L; Bang O; Podoleanu A
    Opt Lett; 2017 Nov; 42(22):4744-4747. PubMed ID: 29140358
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Adaptive balanced detection spectral domain optical coherence tomography.
    Miller DA; Kuranov R; Zhang HF
    Biomed Opt Express; 2023 Oct; 14(10):5208-5222. PubMed ID: 37854571
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions.
    Pan Y; Farkas DL
    J Biomed Opt; 1998 Oct; 3(4):446-55. PubMed ID: 23015145
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Resolution-improved dual-beam and standard optical coherence tomography: a comparison.
    Baumgartner A; Hitzenberger CK; Ergun E; Stur M; Sattmann H; Drexler W; Fercher AF
    Graefes Arch Clin Exp Ophthalmol; 2000 May; 238(5):385-92. PubMed ID: 10901469
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography.
    Adhi M; Liu JJ; Qavi AH; Grulkowski I; Lu CD; Mohler KJ; Ferrara D; Kraus MF; Baumal CR; Witkin AJ; Waheed NK; Hornegger J; Fujimoto JG; Duker JS
    Am J Ophthalmol; 2014 Jun; 157(6):1272-1281.e1. PubMed ID: 24561169
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Spectral attenuation of brain and retina tissues in the near-infrared range measured using a fiber-based supercontinuum device.
    Saldaña-Díaz JE; Jarabo S; Salgado-Remacha FJ; Perdices L; Pinilla I; Sánchez-Cano A
    J Biophotonics; 2017 Sep; 10(9):1105-1109. PubMed ID: 28464552
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm.
    Salem R; Jiang Z; Liu D; Pafchek R; Gardner D; Foy P; Saad M; Jenkins D; Cable A; Fendel P
    Opt Express; 2015 Nov; 23(24):30592-602. PubMed ID: 26698692
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Myocardial imaging using ultrahigh-resolution spectral domain optical coherence tomography.
    Yao X; Gan Y; Marboe CC; Hendon CP
    J Biomed Opt; 2016 Jun; 21(6):61006. PubMed ID: 27001162
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ultra-high-speed phase-sensitive optical coherence reflectometer with a stretched pulse supercontinuum source.
    Song H; Cho SB; Kim DU; Jeong S; Kim DY
    Appl Opt; 2011 Jul; 50(21):4000-4. PubMed ID: 21772383
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ghost optical coherence tomography.
    Amiot CG; Ryczkowski P; Friberg AT; Dudley JM; Genty G
    Opt Express; 2019 Aug; 27(17):24114-24122. PubMed ID: 31510305
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 microm, 2.79 microm, and 0.355 microm laser pulses.
    Dela Rosa A; Sarma AV; Le CQ; Jones RS; Fried D
    Lasers Surg Med; 2004; 35(3):214-28. PubMed ID: 15389737
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Wavelet domain compounding for speckle reduction in optical coherence tomography.
    Xu J; Ou H; Sun C; Chui PC; Yang VX; Lam EY; Wong KK
    J Biomed Opt; 2013 Sep; 18(9):096002. PubMed ID: 24002189
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography.
    Bizheva K; Unterhuber A; Hermann B; Povazay B; Sattmann H; Drexler W; Stingl A; Le T; Mei M; Holzwarth R; Reitsamer HA; Morgan JE; Cowey A
    J Biomed Opt; 2004; 9(4):719-24. PubMed ID: 15250758
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry.
    Moon S; Kim DY
    Opt Express; 2007 Nov; 15(23):15129-46. PubMed ID: 19550796
    [TBL] [Abstract][Full Text] [Related]  

  • 75. MEMS-based handheld fourier domain Doppler optical coherence tomography for intraoperative microvascular anastomosis imaging.
    Huang Y; Furtmüller GJ; Tong D; Zhu S; Lee WP; Brandacher G; Kang JU
    PLoS One; 2014; 9(12):e114215. PubMed ID: 25474742
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Performance analysis of optical coherence tomography in the context of a thickness estimation task.
    Huang J; Yao J; Cirucci N; Ivanov T; Rolland JP
    J Biomed Opt; 2015 Dec; 20(12):121306. PubMed ID: 26378988
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Spectral estimation optical coherence tomography for axial super-resolution.
    Liu X; Chen S; Cui D; Yu X; Liu L
    Opt Express; 2015 Oct; 23(20):26521-32. PubMed ID: 26480165
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source.
    Manninen A; Kääriäinen T; Parviainen T; Buchter S; Heiliö M; Laurila T
    Opt Express; 2014 Mar; 22(6):7172-7. PubMed ID: 24664065
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Multi-watt, multi-octave, mid-infrared femtosecond source.
    Seidel M; Xiao X; Hussain SA; Arisholm G; Hartung A; Zawilski KT; Schunemann PG; Habel F; Trubetskov M; Pervak V; Pronin O; Krausz F
    Sci Adv; 2018 Apr; 4(4):eaaq1526. PubMed ID: 29713685
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.