These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32225421)

  • 81. Optimal signal processing of nonlinearity in swept-source and spectral-domain optical coherence tomography.
    Vergnole S; Lévesque D; Bizheva K; Lamouche G
    Appl Opt; 2012 Apr; 51(11):1701-8. PubMed ID: 22505160
    [TBL] [Abstract][Full Text] [Related]  

  • 82. High-resolution mid-infrared optical coherence tomography with kHz line rate.
    Israelsen NM; Rodrigo PJ; Petersen CR; Woyessa G; Hansen RE; Tidemand-Lichtenberg P; Pedersen C; Bang O
    Opt Lett; 2021 Sep; 46(18):4558-4561. PubMed ID: 34525046
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Mid-infrared DMD-based spectral-coding spectroscopy with a supercontinuum laser source.
    Gattinger P; Zorin I; Ebner A; Rankl C; Brandstetter M
    Opt Express; 2022 Feb; 30(4):6440-6449. PubMed ID: 35209582
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Sensitive multi-species trace gas sensor based on a high repetition rate mid-infrared supercontinuum source.
    Eslami Jahromi K; Nematollahi M; Pan Q; Abbas MA; Cristescu SM; Harren FJM; Khodabakhsh A
    Opt Express; 2020 Aug; 28(18):26091-26101. PubMed ID: 32906885
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Dual-band single-pixel telescope.
    Zhang Y; Gibson GM; Edgar MP; Hammond G; Padgett MJ
    Opt Express; 2020 Jun; 28(12):18180-18188. PubMed ID: 32680019
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Mitigating fringing in discrete frequency infrared imaging using time-delayed integration.
    Ran S; Berisha S; Mankar R; Shih WC; Mayerich D
    Biomed Opt Express; 2018 Feb; 9(2):832-843. PubMed ID: 29552416
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Challenges in multiphysics modeling of dual-band HgCdTe infrared detectors.
    Vallone M; Goano M; Tibaldi A; Hanna S; Eich D; Sieck A; Figgemeier H; Ghione G; Bertazzi F
    Appl Opt; 2020 Jul; 59(19):5656-5663. PubMed ID: 32609686
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Compact dual band/dual FOV infrared imaging system with freeform prism.
    Yu J; Shen Z; Wang Z
    Opt Lett; 2021 Feb; 46(4):829-832. PubMed ID: 33577530
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Fourier domain optical coherence tomography system with balance detection.
    Bradu A; Podoleanu AG
    Opt Express; 2012 Jul; 20(16):17522-38. PubMed ID: 23038305
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Direct hyperspectral dual-comb gas imaging in the mid-infrared.
    Ullah Khan F; Guarnizo G; Martín-Mateos P
    Opt Lett; 2020 Oct; 45(19):5335-5338. PubMed ID: 33001887
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Correction: Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease.
    Seddon AB; Napier B; Lindsay I; Lamrini S; Moselund PM; Stone N; Bang O; Farries M
    Analyst; 2020 May; 145(10):3757-3758. PubMed ID: 32307481
    [TBL] [Abstract][Full Text] [Related]  

  • 92. In-Mould OCT Sensors Combined with Piezo-Actuated Positioning Devices for Compensating for Displacement in Injection Overmoulding of Optoelectronic Parts.
    Hannesschläger G; Schwarze M; Leiss-Holzinger E; Rankl C
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991953
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Programmable and tunable flat-top supercontinuum laser sources via electro-optic intensity and phase modulation scheme.
    Song M; Song M; Lim S; Choi H; Lee T; Choi G; Jung Y; Ahn JT
    Sci Rep; 2022 Oct; 12(1):18036. PubMed ID: 36302864
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Rapid chemically selective 3D imaging in the mid-infrared.
    Potma EO; Knez D; Chen Y; Davydova Y; Durkin A; Fast A; Balu M; Norton-Baker B; Martin RW; Baldacchini T; Fishman DA
    Optica; 2021 Jul; 8(7):995-1002. PubMed ID: 35233439
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Dual-band infrared optical coherence tomography using a single supercontinuum source.
    Zorin I; Gattinger P; Brandstetter M; Heise B
    Opt Express; 2020 Mar; 28(6):7858-7874. PubMed ID: 32225421
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Correlative infrared optical coherence tomography and hyperspectral chemical imaging.
    Zorin I; Su R; Heise B; Lendl B; Brandstetter M
    J Opt Soc Am A Opt Image Sci Vis; 2020 Sep; 37(9):B19-B26. PubMed ID: 32902416
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Real-time high-resolution mid-infrared optical coherence tomography.
    Israelsen NM; Petersen CR; Barh A; Jain D; Jensen M; Hannesschläger G; Tidemand-Lichtenberg P; Pedersen C; Podoleanu A; Bang O
    Light Sci Appl; 2019; 8():11. PubMed ID: 30675345
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Biological applications of synchrotron radiation infrared spectromicroscopy.
    Marcelli A; Cricenti A; Kwiatek WM; Petibois C
    Biotechnol Adv; 2012; 30(6):1390-404. PubMed ID: 22401782
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.