These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32225515)

  • 1. Multi-point spectroscopic gas sensing based on coherent FMCW interferometry.
    Lou X; Feng Y; Chen C; Dong Y
    Opt Express; 2020 Mar; 28(6):9014-9026. PubMed ID: 32225515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multipoint dispersion spectroscopic gas sensing by optical FMCW interferometry.
    Lou X; Wang Y; Dong Y
    Opt Lett; 2021 Dec; 46(23):5950-5953. PubMed ID: 34851931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous measurement of gas absorption spectra and optical path lengths in a multipass cell by FMCW interferometry.
    Lou X; Chen C; Feng Y; Dong Y
    Opt Lett; 2018 Jun; 43(12):2872-2875. PubMed ID: 29905711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-compensated multi-point refractive index sensing based on a cascaded Fabry-Perot cavity and FMCW interferometry.
    Zhu Z; Ba D; Liu L; Qiu L; Yang S; Dong Y
    Opt Express; 2021 Jun; 29(12):19034-19048. PubMed ID: 34154146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-Compensated Multi-Point Strain Sensing Based on Cascaded FBG and Optical FMCW Interferometry.
    Feng Z; Cheng Y; Chen M; Yuan L; Hong D; Li L
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Millimeter-Waves in the Distance Measurement Accuracy of an FMCW Radar Sensor.
    Bhutani A; Marahrens S; Gehringer M; Göttel B; Pauli M; Zwick T
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31547328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid spectroscopic gas sensing using optical linear chirp chain.
    Lou X; Yuan Z; Dong Y
    Opt Express; 2019 Apr; 27(9):13160-13171. PubMed ID: 31052845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Method of Measuring Instantaneous Frequency of an Ultrafast Frequency Modulated Continuous-Wave Laser.
    Yang J; Yang T; Wang Z; Jia D; Ge C
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32660043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplexing of optical fiber gas sensors with a frequency-modulated continuous-wave technique.
    Yu HB; Jin W; Ho HL; Chan KC; Chan CC; Demokan MS; Stewart G; Culshaw B; Liao YB
    Appl Opt; 2001 Mar; 40(7):1011-20. PubMed ID: 18357084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultralinear 140-GHz FMCW signal generation with optical parametric wideband frequency modulation enabling 1-mm range resolution.
    Ishimura S; Kan T; Takahashi H; Tsuritani T; Suzuki M
    Opt Express; 2023 Apr; 31(8):13384-13392. PubMed ID: 37157477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband dual-chirp FMCW laser source based on DSB-SC modulation and cascaded FWM.
    Xiao Z; Wu Z; Xia G
    Opt Express; 2023 Aug; 31(18):29925-29933. PubMed ID: 37710781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Massively parallel FMCW lidar with cm range resolution using an electro-optic frequency comb.
    He B; Zhang C; Yang J; Chen N; He X; Tao J; Zhang Z; Chu T; Chen Z; Xie X
    Opt Lett; 2023 Jul; 48(13):3621-3624. PubMed ID: 37390197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range.
    Jin W; Cao Y; Yang F; Ho HL
    Nat Commun; 2015 Apr; 6():6767. PubMed ID: 25866015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed gas sensing with optical fibre photothermal interferometry.
    Lin Y; Liu F; He X; Jin W; Zhang M; Yang F; Ho HL; Tan Y; Gu L
    Opt Express; 2017 Dec; 25(25):31568-31585. PubMed ID: 29245830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-broadband multi-tone frequency measurement based on the recirculating frequency shift of a frequency modulated continuous wave.
    Xiaoen C; Long W; Jingbo L; Jianping C; Guiling W
    Opt Express; 2024 Apr; 32(8):13864-13872. PubMed ID: 38859345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-accuracy range-sensing system based on FMCW using low-cost VCSEL.
    Hariyama T; Sandborn PAM; Watanabe M; Wu MC
    Opt Express; 2018 Apr; 26(7):9285-9297. PubMed ID: 29715882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersive white light combined with a frequency-modulated continuous-wave interferometer for high-resolution absolute measurements of distance.
    Rovati L; Minoni U; Docchio F
    Opt Lett; 1997 Jun; 22(12):850-2. PubMed ID: 18185683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distributed Acoustic Sensing Based on Coherent Microwave Photonics Interferometry.
    Hua L; Zhu X; Cheng B; Song Y; Zhang Q; Wu Y; Murdoch LC; Dauson ER; Donahue CM; Xiao H
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capability of long distance 100  GHz FMCW using a single GDD lamp sensor.
    Levanon A; Rozban D; Aharon Akram A; Kopeika NS; Yitzhaky Y; Abramovich A
    Appl Opt; 2014 Dec; 53(36):8549-55. PubMed ID: 25608205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multipoint sensing with a low-coherence source using single-arm frequency-shifted interferometry.
    Zhang Y; Ye F; Qi B; Qian L
    Appl Opt; 2016 Jul; 55(21):5526-30. PubMed ID: 27463900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.