These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32225619)

  • 1. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons.
    Bai C; Chen J; Zhang Y; Zhang D; Zhan Q
    Opt Express; 2020 Mar; 28(7):10320-10328. PubMed ID: 32225619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical skyrmion lattice in evanescent electromagnetic fields.
    Tsesses S; Ostrovsky E; Cohen K; Gjonaj B; Lindner NH; Bartal G
    Science; 2018 Sep; 361(6406):993-996. PubMed ID: 30026318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons: comment.
    Meiler T; Frank B; Giessen H
    Opt Express; 2020 Oct; 28(22):33614-33615. PubMed ID: 33115020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons: reply.
    Bai C; Chen J; Zhang D; Zhan Q
    Opt Express; 2020 Oct; 28(22):33616-33618. PubMed ID: 33115021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-space anisotropic dielectric response in a multiferroic skyrmion lattice.
    Chu P; Xie YL; Zhang Y; Chen JP; Chen DP; Yan ZB; Liu JM
    Sci Rep; 2015 Feb; 5():8318. PubMed ID: 25661786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Skyrmion Lattice Based on the Magnetoelectric Effect.
    Wang XG; Chotorlishvili L; Arnold N; Dugaev VK; Maznichenko I; Barnaś J; Buczek PA; Parkin SSP; Ernst A
    Phys Rev Lett; 2020 Nov; 125(22):227201. PubMed ID: 33315433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice.
    Matsumoto T; So YG; Kohno Y; Sawada H; Ikuhara Y; Shibata N
    Sci Adv; 2016 Feb; 2(2):e1501280. PubMed ID: 26933690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle-size dependent structural transformation of skyrmion lattice.
    Takagi R; Yamasaki Y; Yokouchi T; Ukleev V; Yokoyama Y; Nakao H; Arima T; Tokura Y; Seki S
    Nat Commun; 2020 Nov; 11(1):5685. PubMed ID: 33177528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creation of Magnetic Skyrmion Bubble Lattices by Ultrafast Laser in Ultrathin Films.
    Je SG; Vallobra P; Srivastava T; Rojas-Sánchez JC; Pham TH; Hehn M; Malinowski G; Baraduc C; Auffret S; Gaudin G; Mangin S; Béa H; Boulle O
    Nano Lett; 2018 Nov; 18(11):7362-7371. PubMed ID: 30295499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband focusing and demultiplexing of surface plasmon polaritons on metal surface by holographic groove patterns.
    Chen YG; Yang FY; Liu J; Li ZY
    Opt Express; 2014 Jun; 22(12):14727-37. PubMed ID: 24977568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound.
    Okamura Y; Kagawa F; Seki S; Tokura Y
    Nat Commun; 2016 Sep; 7():12669. PubMed ID: 27580648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multidomain Skyrmion Lattice State in Cu2OSeO3.
    Zhang SL; Bauer A; Burn DM; Milde P; Neuber E; Eng LM; Berger H; Pfleiderer C; van der Laan G; Hesjedal T
    Nano Lett; 2016 May; 16(5):3285-91. PubMed ID: 27070961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV
    Sekiguchi F; Budzinauskas K; Padmanabhan P; Versteeg RB; Tsurkan V; Kézsmárki I; Foggetti F; Artyukhin S; van Loosdrecht PHM
    Nat Commun; 2022 Jun; 13(1):3212. PubMed ID: 35680864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric-field-induced Skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3.
    White JS; Prša K; Huang P; Omrani AA; Zivković I; Bartkowiak M; Berger H; Magrez A; Gavilano JL; Nagy G; Zang J; Rønnow HM
    Phys Rev Lett; 2014 Sep; 113(10):107203. PubMed ID: 25238382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strategy for the design of skyrmion racetrack memories.
    Tomasello R; Martinez E; Zivieri R; Torres L; Carpentieri M; Finocchio G
    Sci Rep; 2014 Oct; 4():6784. PubMed ID: 25351135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shift of the surface plasmon polariton interference pattern in symmetrical arc slit structures and its application to Rayleigh metallic particle trapping.
    Bai C; Chen J; Zhang Y; Kanwal S; Zhang D; Zhan Q
    Opt Express; 2020 Jul; 28(14):21210-21219. PubMed ID: 32680166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instability of skyrmion lattice under microwave magnetic field due to single-
    Li Y; Wang X; Ma L
    J Phys Condens Matter; 2022 Dec; 35(10):. PubMed ID: 36538827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of Skyrmion Motion Dynamics for Logical Device Application Mediated by Inhomogeneous Magnetic Anisotropy.
    Lin JQ; Chen JP; Tan ZY; Chen Y; Chen ZF; Li WA; Gao XS; Liu JM
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical Generation and Deletion of Magnetic Skyrmion-Bubbles via Vertical Current Injection.
    Yang S; Moon KW; Ju TS; Kim C; Kim HJ; Kim J; Tran BX; Hong JI; Hwang C
    Adv Mater; 2021 Nov; 33(45):e2104406. PubMed ID: 34569658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the transmission of surface plasmon polaritons across nano and micro gaps in gold stripes.
    Ghafoori G; Boneberg J; Leiderer P; Scheer E
    Opt Express; 2016 Jul; 24(15):17313-20. PubMed ID: 27464180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.