These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32225666)

  • 1. Laser-driven optothermal microactuator operated in water.
    You Q; Wang Y; Zhang Z; Zhang H; Tsuchiya T; Tabata O
    Appl Opt; 2020 Feb; 59(6):1627-1632. PubMed ID: 32225666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic research on the properties of optothermal microactuators with different lever ratios.
    Zhang Z; Wang Y; You Q; Zhang H
    Microsc Res Tech; 2020 May; 83(5):464-471. PubMed ID: 31909858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on characteristics of symmetric optothermal microactuators.
    Wang YD; You QY; Chen JJ; Zhang HJ
    Appl Opt; 2018 Apr; 57(10):2420-2425. PubMed ID: 29714223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and experimental study of optothermal expansion and optothermal microactuator.
    Zhang D; Zhang H; Liu C; Jiang J
    Opt Express; 2008 Aug; 16(17):13476-85. PubMed ID: 18711587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic observation and laser-controlled microoptothermal drive mechanism.
    Zhang D; Zhang H; Liu C; Jiang J
    Microsc Res Tech; 2008 Feb; 71(2):119-24. PubMed ID: 17960601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Development of photothermal microactuator based on spectral analysis of photothermal expansion material].
    Liu C; Zhang DX; Zhang HJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3047-51. PubMed ID: 20101983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonant-Opto-Thermomechanical Oscillator (ROTMO): A Low-Power, Large Displacement, High-Frequency Optically Driven Microactuator.
    Pevec S; Donlagic D
    Small; 2022 Sep; 18(35):e2107552. PubMed ID: 35869621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-assisted single-beam optothermal manipulation of microparticles.
    Liu Y; Poon AW
    Opt Express; 2010 Aug; 18(17):18483-91. PubMed ID: 20721243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Magnetic Microactuator Design Based on PDMS Elastomer and MEMS Technologies for Tactile Display.
    Streque J; Talbi A; Pernod P; Preobrazhensky V
    IEEE Trans Haptics; 2010; 3(2):88-97. PubMed ID: 27788116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiresponsive Microactuator for Ultrafast Submillimeter Robots.
    Hui X; Luo J; Wang R; Sun H
    ACS Nano; 2023 Apr; 17(7):6589-6600. PubMed ID: 36976705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of ultrafast laser-driven microactuator based on photoacoustic mechanism.
    Li FH; Pei CX; Shi B; Sun LB; Zhang HJ; Jiang JZ; Zhang DX
    Opt Express; 2015 Aug; 23(16):20563-8. PubMed ID: 26367908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic properties of a metal photo-thermal micro-actuator.
    Shi B; Zhang HJ; Wang B; Yi FT; Jiang JZ; Zhang DX
    Appl Opt; 2015 Feb; 54(6):1369-73. PubMed ID: 25968201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microgripper Using Soft Microactuators for Manipulation of Living Cells.
    Kodera S; Watanabe T; Yokoyama Y; Hayakawa T
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal optothermal micro/nanoscale rotors.
    Ding H; Kollipara PS; Kim Y; Kotnala A; Li J; Chen Z; Zheng Y
    Sci Adv; 2022 Jun; 8(24):eabn8498. PubMed ID: 35704582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assisted optothermal trapping of gold nanorods under two-photon excitation.
    Chen H; Gratton E; Digman MA
    Methods Appl Fluoresc; 2016 Sep; 4(3):035003. PubMed ID: 28355163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of bimaterial cantilever beam for heat sensing at atmospheric pressure.
    Toda M; Ono T; Liu F; Voiculescu I
    Rev Sci Instrum; 2010 May; 81(5):055104. PubMed ID: 20515169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and design optimization of large-deflection piezoelectric folded cantilever microactuators.
    Fang H; Liu L; Ren T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):237-40. PubMed ID: 16471450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal lesions produced by CO2 laser beams: new findings to improve the quality of minimally invasive and transmyocardial laser revascularization protocols.
    Canestri F
    J Clin Laser Med Surg; 2000 Apr; 18(2):49-55. PubMed ID: 11800102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ablation of porcine ligamentum flavum with Ho:YAG, q-switched Ho:YAG, and quadrupled Nd:YAG lasers.
    Johnson MR; Codd PJ; Hill WM; Boettcher T
    Lasers Surg Med; 2015 Dec; 47(10):839-51. PubMed ID: 26415136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.