These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32225712)

  • 61. Modal decomposition without a priori scale information.
    Schulze C; Ngcobo S; Duparré M; Forbes A
    Opt Express; 2012 Dec; 20(25):27866-73. PubMed ID: 23262731
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Stabilization of the 81-channel coherent beam combination using machine learning.
    Wang D; Du Q; Zhou T; Li D; Wilcox R
    Opt Express; 2021 Feb; 29(4):5694-5709. PubMed ID: 33726104
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Theory of diffraction of vortex beams from structured apertures and generation of elegant elliptical vortex Hermite-Gaussian beams.
    Hebri D; Rasouli S; Dezfouli AM
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):839-852. PubMed ID: 31045012
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modal decomposition of partially coherent flat-topped beams produced by multimode lasers.
    Borghi R; Santarsiero M
    Opt Lett; 1998 Mar; 23(5):313-5. PubMed ID: 18084496
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies.
    Vivanti R; Joskowicz L; Lev-Cohain N; Ephrat A; Sosna J
    Med Biol Eng Comput; 2018 Sep; 56(9):1699-1713. PubMed ID: 29524116
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fast fiber mode decomposition with a lensless fiber-point-diffraction interferometer.
    Li J; Zhang X; Zheng Y; Li F; Shan X; Han Z; Zhu R
    Opt Lett; 2021 May; 46(10):2501-2504. PubMed ID: 33988619
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Beam duality, with application to generalized Bessel-Gaussian, and Hermite- and Laguerre- Gaussian beams.
    Sheppard CJ
    Opt Express; 2009 Mar; 17(5):3690-7. PubMed ID: 19259209
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Characterizing output beams for lasers that use high-magnification unstable resonators.
    Saghafi S; Withford MJ; Piper JA
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1634-43. PubMed ID: 11444555
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Phase compensation of azimuthally polarized j(1) bessel-gaussian laser beams.
    Tovar AA
    Appl Opt; 1998 Jan; 37(3):540-5. PubMed ID: 18268622
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hermite-Gaussian mode detection via convolution neural networks.
    Hofer LR; Jones LW; Goedert JL; Dragone RV
    J Opt Soc Am A Opt Image Sci Vis; 2019 Jun; 36(6):936-943. PubMed ID: 31158124
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere.
    Eyyuboğlu HT
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1527-35. PubMed ID: 16134847
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Analysis of lasing in gas-flow lasers with stable resonators.
    Barmashenko B; Furman D; Rosenwaks S
    Appl Opt; 1998 Aug; 37(24):5697-705. PubMed ID: 18286057
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Propagation and focusing of Gaussian beams generated by Gaussian mirror resonators.
    Li Y
    J Opt Soc Am A Opt Image Sci Vis; 2002 Sep; 19(9):1832-43. PubMed ID: 12216877
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effective tensor approach for simulating the propagation of partially coherent Hermite-sinh-Gaussian beams through an ABCD optical system in turbulent atmosphere.
    Ma H; Li J; Sun P
    J Opt Soc Am A Opt Image Sci Vis; 2019 Dec; 36(12):2011-2016. PubMed ID: 31873373
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Beam-propagation factor and mode-coherence coefficients of hyperbolic-cosine Gaussian beams.
    Lü B; Zhang B; Ma H
    Opt Lett; 1999 May; 24(10):640-2. PubMed ID: 18073808
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Generation of high-power spatially structured beams using vertical external cavity surface emitting lasers.
    Lukowski ML; Meyer JT; Hessenius C; Wright EM; Fallahi M
    Opt Express; 2017 Oct; 25(21):25504-25514. PubMed ID: 29041217
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Computed tomography super-resolution using deep convolutional neural network.
    Park J; Hwang D; Kim KY; Kang SK; Kim YK; Lee JS
    Phys Med Biol; 2018 Jul; 63(14):145011. PubMed ID: 29923839
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Learning a Single Tucker Decomposition Network for Lossy Image Compression with Multiple Bits-Per-Pixel Rates.
    Cai J; Cao Z; Zhang L
    IEEE Trans Image Process; 2020 Jan; ():. PubMed ID: 31940535
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Experimental realization of a diffractive unstable resonator with Gaussian amplitude of the outcoupled beam using a VECSEL amplifier.
    Eckstein HC; Zeitner UD
    Opt Express; 2009 Sep; 17(20):17384-90. PubMed ID: 19907524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.