These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32225781)

  • 1. Video microscopy-based accurate optical force measurement by exploring a frequency-changing sinusoidal stimulus.
    Xu T; Wu S; Jiang Z; Wu X; Zhang Q
    Appl Opt; 2020 Mar; 59(8):2452-2456. PubMed ID: 32225781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward optical-tweezers-based force microscopy for airborne microparticles.
    Power RM; Burnham DR; Reid JP
    Appl Opt; 2014 Dec; 53(36):8522-34. PubMed ID: 25608202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-speed transverse and axial optical force measurements using amplitude filter masks.
    Kashchuk AV; Nieminen TA; Rubinsztein-Dunlop H; Stilgoe AB
    Opt Express; 2019 Apr; 27(7):10034-10049. PubMed ID: 31045150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions.
    van Mameren J; Wuite GJL; Heller I
    Methods Mol Biol; 2018; 1665():3-23. PubMed ID: 28940061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superresolution imaging in optical tweezers using high-speed cameras.
    Staforelli JP; Vera E; Brito JM; Solano P; Torres S; Saavedra C
    Opt Express; 2010 Feb; 18(4):3322-31. PubMed ID: 20389339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy.
    Gibson GM; Leach J; Keen S; Wright AJ; Padgett MJ
    Opt Express; 2008 Sep; 16(19):14561-70. PubMed ID: 18794991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Trap Loading of Dielectric Microparticles In Air.
    Park H; LeBrun TW
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28190055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibration of force detection for arbitrarily shaped particles in optical tweezers.
    Bui AAM; Kashchuk AV; Balanant MA; Nieminen TA; Rubinsztein-Dunlop H; Stilgoe AB
    Sci Rep; 2018 Jul; 8(1):10798. PubMed ID: 30018378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic measurements of transverse optical trapping force in biological applications.
    Ermilov S; Anvari B
    Ann Biomed Eng; 2004 Jul; 32(7):1016-26. PubMed ID: 15298439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction to optical tweezers: background, system designs, and commercial solutions.
    van Mameren J; Wuite GJ; Heller I
    Methods Mol Biol; 2011; 783():1-20. PubMed ID: 21909880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time identification of the singleness of a trapped bead in optical tweezers.
    Hu C; Su C; Yun Z; Wang S; He C; Gao X; Li S; Li H; Hu X; Hu X
    Appl Opt; 2018 Feb; 57(5):1241-1246. PubMed ID: 29469870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct measurement of the nonconservative force field generated by optical tweezers.
    Wu P; Huang R; Tischer C; Jonas A; Florin EL
    Phys Rev Lett; 2009 Sep; 103(10):108101. PubMed ID: 19792342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-trap technique for reduction of low-frequency noise in force measuring optical tweezers.
    Klein M; Andersson M; Axner O; Fällman E
    Appl Opt; 2007 Jan; 46(3):405-12. PubMed ID: 17228388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis.
    Otto O; Gutsche C; Kremer F; Keyser UF
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023710. PubMed ID: 18315308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escape forces and trajectories in optical tweezers and their effect on calibration.
    Bui AA; Stilgoe AB; Khatibzadeh N; Nieminen TA; Berns MW; Rubinsztein-Dunlop H
    Opt Express; 2015 Sep; 23(19):24317-30. PubMed ID: 26406637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Force Sensing Using an Optically Trapped Probing System.
    Huang Y; Cheng P; Menq CH
    IEEE ASME Trans Mechatron; 2011 Dec; 16(6):. PubMed ID: 24382944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Stiffness of Multiple Particles Trapped by Dielectrophoretic Tweezers in a Microfluidic Device.
    Son M; Choi S; Ko KH; Kim MH; Lee SY; Key J; Yoon YR; Park IS; Lee SW
    Langmuir; 2016 Jan; 32(3):922-7. PubMed ID: 26734855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Optically Controlled Microscale Elevator Using Plasmonic Janus Particles.
    Nedev S; Carretero-Palacios S; Kühler P; Lohmüller T; Urban AS; Anderson LJ; Feldmann J
    ACS Photonics; 2015 Apr; 2(4):491-496. PubMed ID: 25950013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.