These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32225781)

  • 21. Construction and calibration of an optical trap on a fluorescence optical microscope.
    Lee WM; Reece PJ; Marchington RF; Metzger NK; Dholakia K
    Nat Protoc; 2007; 2(12):3226-38. PubMed ID: 18079723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantifying Force and Viscoelasticity Inside Living Cells Using an Active-Passive Calibrated Optical Trap.
    Ritter CM; Mas J; Oddershede L; Berg-Sørensen K
    Methods Mol Biol; 2017; 1486():513-536. PubMed ID: 27844442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multidepth, multiparticle tracking for active microrheology using a smart camera.
    Silburn SA; Saunter CD; Girkin JM; Love GD
    Rev Sci Instrum; 2011 Mar; 82(3):033712. PubMed ID: 21456756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Touching the microworld with force-feedback optical tweezers.
    Pacoret C; Bowman R; Gibson G; Haliyo S; Carberry D; Bergander A; Régnier S; Padgett M
    Opt Express; 2009 Jun; 17(12):10259-64. PubMed ID: 19506679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Invited article: a review of haptic optical tweezers for an interactive microworld exploration.
    Pacoret C; Régnier S
    Rev Sci Instrum; 2013 Aug; 84(8):081301. PubMed ID: 24007046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range.
    Righini M; Volpe G; Girard C; Petrov D; Quidant R
    Phys Rev Lett; 2008 May; 100(18):186804. PubMed ID: 18518404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct measurement of the oscillation frequency in an optical-tweezers trap by parametric excitation.
    Joykutty J; Mathur V; Venkataraman V; Natarajan V
    Phys Rev Lett; 2005 Nov; 95(19):193902. PubMed ID: 16383979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calibration of nonspherical particles in optical tweezers using only position measurement.
    Bui AA; Stilgoe AB; Nieminen TA; Rubinsztein-Dunlop H
    Opt Lett; 2013 Apr; 38(8):1244-6. PubMed ID: 23595446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localized cell stiffness measurement using axial movement of an optically trapped microparticle.
    Dy MC; Kanaya S; Sugiura T
    J Biomed Opt; 2013 Nov; 18(11):111411. PubMed ID: 23934015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time particle tracking at 10,000 fps using optical fiber illumination.
    Otto O; Czerwinski F; Gornall JL; Stober G; Oddershede LB; Seidel R; Keyser UF
    Opt Express; 2010 Oct; 18(22):22722-33. PubMed ID: 21164611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of external forces on discrete motion within holographic optical tweezers.
    Eriksson E; Keen S; Leach J; Goksör M; Padgett MJ
    Opt Express; 2007 Dec; 15(26):18268-74. PubMed ID: 19551124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Video-based and interference-free axial force detection and analysis for optical tweezers.
    Knust S; Spiering A; Vieker H; Beyer A; Gölzhäuser A; Tönsing K; Sischka A; Anselmetti D
    Rev Sci Instrum; 2012 Oct; 83(10):103704. PubMed ID: 23126771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging.
    Thalhammer G; McDougall C; MacDonald MP; Ritsch-Marte M
    Lab Chip; 2016 Apr; 16(8):1523-32. PubMed ID: 27025398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Why single-beam optical tweezers trap gold nanowires in three dimensions.
    Yan Z; Pelton M; Vigderman L; Zubarev ER; Scherer NF
    ACS Nano; 2013 Oct; 7(10):8794-800. PubMed ID: 24041038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Signal-to-Noise and Fast Calibration of Optical Tweezers Using Single Trapping Events.
    Stilgoe AB; Armstrong DJ; Rubinsztein-Dunlop H
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34067843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical tweezer micromanipulation of filamentous fungi.
    Wright GD; Arlt J; Poon WC; Read ND
    Fungal Genet Biol; 2007 Jan; 44(1):1-13. PubMed ID: 16908207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic tweezers: micromanipulation and force measurement at the molecular level.
    Gosse C; Croquette V
    Biophys J; 2002 Jun; 82(6):3314-29. PubMed ID: 12023254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual-trap optical tweezers with real-time force clamp control.
    Wallin AE; Ojala H; Ziedaite G; Hæggström E
    Rev Sci Instrum; 2011 Aug; 82(8):083102. PubMed ID: 21895228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining optical tweezers and patch clamp for studies of cell membrane electromechanics.
    Qian F; Ermilov S; Murdock D; Brownell WE; Anvari B
    Rev Sci Instrum; 2004 Sep; 75(9):2937-2942. PubMed ID: 21412445
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.