These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32225788)

  • 1. Development of an autofocusing system using an electrically tunable lens in large area holographic lithography.
    Hou R; Yu J; Huang Y; Ke H; Liu H
    Appl Opt; 2020 Mar; 59(8):2521-2529. PubMed ID: 32225788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of axial scanning range and magnification variation in wide-field microscope for measurement using an electrically tunable lens.
    Qu Y; Hu Y
    Microsc Res Tech; 2019 Feb; 82(2):101-113. PubMed ID: 30451353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing.
    Wang Z; Lei M; Yao B; Cai Y; Liang Y; Yang Y; Yang X; Li H; Xiong D
    Biomed Opt Express; 2015 Nov; 6(11):4353-64. PubMed ID: 26601001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo fast variable focus photoacoustic microscopy using an electrically tunable lens.
    Li B; Qin H; Yang S; Xing D
    Opt Express; 2014 Aug; 22(17):20130-7. PubMed ID: 25321222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and flexible phase compensation for digital holographic microscopy with electrically tunable lens.
    Deng D; Peng J; Qu W; Wu Y; Liu X; He W; Peng X
    Appl Opt; 2017 Jul; 56(21):6007-6014. PubMed ID: 29047923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration method for the electrically tunable lens based on shape-changing polymer.
    Lu Z; Cai L
    Opt Express; 2020 Oct; 28(21):31140-31162. PubMed ID: 33115095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focal length calibration of an electrically tunable lens by digital holography.
    Wang Z; Qu W; Yang F; Asundi AK
    Appl Opt; 2016 Feb; 55(4):749-56. PubMed ID: 26836076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple, non-mechanical and automatic calibration approach for axial-scanning microscopy with an electrically tunable lens.
    Li S; Zhao Y; Wen W; Ma Y; Liu S; Chen G; Ye Y
    Microsc Res Tech; 2023 Oct; 86(10):1391-1400. PubMed ID: 37119118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autofocusing system for spatial light modulator-based maskless lithography.
    Schlangen S; Ihme M; Rahlves M; Roth B
    Appl Opt; 2016 Mar; 55(8):1863-70. PubMed ID: 26974774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Development of an Automated Dual-Mode Microscopic System Using Electrically Tunable Lenses.
    Barak N; Kumari V; Sheoran G
    Microsc Microanal; 2022 Feb; 28(1):173-184. PubMed ID: 34930510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically Tunable Lens (ETL)-Based Variable Focus Imaging System for Parametric Surface Texture Analysis of Materials.
    Nirwan JS; Lou S; Hussain S; Nauman M; Hussain T; Conway BR; Ghori MU
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation and analysis of variable numerical aperture wide-field microscopy for telecentricity with constant resolution.
    Barak N; Kumari V; Sheoran G
    Micron; 2021 Jun; 145():103064. PubMed ID: 33845334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field.
    Chen HS; Lin YH
    Opt Express; 2013 Jul; 21(15):18079-88. PubMed ID: 23938679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time 3D stabilization of a super-resolution microscope using an electrically tunable lens.
    Tafteh R; Abraham L; Seo D; Lu HY; Gold MR; Chou KC
    Opt Express; 2016 Oct; 24(20):22959-22970. PubMed ID: 27828362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed 3-D measurement with a large field of view based on direct-view confocal microscope with an electrically tunable lens.
    Jeong HJ; Yoo H; Gweon D
    Opt Express; 2016 Feb; 24(4):3806-16. PubMed ID: 26907034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-conjugate holographic lithography based on micromirror array recording.
    Lim Y; Hahn J; Lee B
    Appl Opt; 2011 Dec; 50(34):H68-74. PubMed ID: 22193029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple autofocusing method by image processing using transmission images for large-scale two-photon lithography.
    Fujishiro Y; Furukawa T; Maruo S
    Opt Express; 2020 Apr; 28(8):12342-12351. PubMed ID: 32403732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask.
    Lutkenhaus J; George D; Moazzezi M; Philipose U; Lin Y
    Opt Express; 2013 Nov; 21(22):26227-35. PubMed ID: 24216847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast 3-D temporal focusing microscopy using an electrically tunable lens.
    Jiang J; Zhang D; Walker S; Gu C; Ke Y; Yung WH; Chen SC
    Opt Express; 2015 Sep; 23(19):24362-8. PubMed ID: 26406641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital holographic microscopy and focusing methods based on image sharpness.
    İlhan HA; Doğar M; Özcan M
    J Microsc; 2014 Sep; 255(3):138-49. PubMed ID: 24894875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.