These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32225789)

  • 1. Polarization-coded material classification in automotive LIDAR aiming at safer autonomous driving implementations.
    Nunes-Pereira EJ; Peixoto H; Teixeira J; Santos J
    Appl Opt; 2020 Mar; 59(8):2530-2540. PubMed ID: 32225789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Automotive LiDAR Performance Test Method in Dynamic Driving Conditions.
    Park J; Cho J; Lee S; Bak S; Kim Y
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirements for Automotive LiDAR Systems.
    Dai Z; Wolf A; Ley PP; Glück T; Sundermeier MC; Lachmayer R
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of Hyperspectral Single Photon Lidar for Robust Autonomous Vehicle Perception.
    Taher J; Hakala T; Jaakkola A; Hyyti H; Kukko A; Manninen P; Maanpää J; Hyyppä J
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weather Classification Using an Automotive LIDAR Sensor Based on Detections on Asphalt and Atmosphere.
    Vargas Rivero JR; Gerbich T; Teiluf V; Buschardt B; Chen J
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32752297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automotive Lidar Modelling Approach Based on Material Properties and Lidar Capabilities.
    Muckenhuber S; Holzer H; Bockaj Z
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32532072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance Evaluation of MEMS-Based Automotive LiDAR Sensor and Its Simulation Model as per ASTM E3125-17 Standard.
    Haider A; Cho Y; Pigniczki M; Köhler MH; Haas L; Kastner L; Fink M; Schardt M; Cichy Y; Koyama S; Zeh T; Poguntke T; Inoue H; Jakobi M; Koch AW
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of Automotive LiDAR Vision in Rain from Material and Optical Perspectives.
    Pao WY; Howorth J; Li L; Agelin-Chaab M; Roy L; Knutzen J; Baltazar-Y-Jimenez A; Muenker K
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of the Closest In-Path Vehicle by Low-Channel LiDAR and Camera Sensor Fusion for Autonomous Vehicles.
    Bae H; Lee G; Yang J; Shin G; Choi G; Lim Y
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fault Detection, Isolation, Identification and Recovery (FDIIR) Methods for Automotive Perception Sensors Including a Detailed Literature Survey for Lidar.
    Goelles T; Schlager B; Muckenhuber S
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32629897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors.
    Haider A; Pigniczki M; Koyama S; Köhler MH; Haas L; Fink M; Schardt M; Nagase K; Zeh T; Eryildirim A; Poguntke T; Inoue H; Jakobi M; Koch AW
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking of Various LiDAR Sensors for Use in Self-Driving Vehicles in Real-World Environments.
    Schulte-Tigges J; Förster M; Nikolovski G; Reke M; Ferrein A; Kaszner D; Matheis D; Walter T
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Analysis of NDT-based Graph SLAM for Autonomous Vehicle in Diverse Typical Driving Scenarios of Hong Kong.
    Wen W; Hsu LT; Zhang G
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30441784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instantaneous Material Classification Using a Polarization-Diverse RMCW LIDAR.
    Pulikkaseril C; Ross D; Tofini A; Lize YK; Collarte F
    Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of High-Fidelity Automotive LiDAR Sensor Model with Standardized Interfaces.
    Haider A; Pigniczki M; Köhler MH; Fink M; Schardt M; Cichy Y; Zeh T; Haas L; Poguntke T; Jakobi M; Koch AW
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fail-Aware LIDAR-Based Odometry for Autonomous Vehicles.
    García Daza I; Rentero M; Salinas Maldonado C; Izquierdo Gonzalo R; Hernández Parra N; Ballardini A; Fernandez Llorca D
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32717844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of Low Terahertz Radar Signal Backscattering for Surface Identification.
    Sabery SM; Bystrov A; Navarro-Cía M; Gardner P; Gashinova M
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Definition 3D Map Creation Using GNSS/IMU/LiDAR Sensor Integration to Support Autonomous Vehicle Navigation.
    Ilci V; Toth C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review.
    Li Y; Ma L; Zhong Z; Liu F; Chapman MA; Cao D; Li J
    IEEE Trans Neural Netw Learn Syst; 2021 Aug; 32(8):3412-3432. PubMed ID: 32822311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensing with Polarized LIDAR in Degraded Visibility Conditions Due to Fog and Low Clouds.
    Ronen A; Agassi E; Yaron O
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.