These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32225816)

  • 1. Fine gust front structure observed by coherent Doppler lidar at Lanzhou Airport (103°49$^{\prime}$
    Han Y; Liu J; Sun D; Han F; Zhou A; Zhao R; Xue X; Chen T; Zhen F; Lu Y
    Appl Opt; 2020 Mar; 59(9):2686-2694. PubMed ID: 32225816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of Low-Level Wind Shear by Ground-based 3D Lidar for Increased Flight Safety, Protection of Human Lives and Health.
    Nechaj P; Gaál L; Bartok J; Vorobyeva O; Gera M; Kelemen M; Polishchuk V
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31752438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous wind and rainfall detection by power spectrum analysis using a VAD scanning coherent Doppler lidar.
    Wei T; Xia H; Hu J; Wang C; Shangguan M; Wang L; Jia M; Dou X
    Opt Express; 2019 Oct; 27(22):31235-31245. PubMed ID: 31684359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wind Gust Measurement Techniques-From Traditional Anemometry to New Possibilities.
    Suomi I; Vihma T
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar.
    Banakh VA; Smalikho IN; Falits AV
    Opt Express; 2017 Sep; 25(19):22679-22692. PubMed ID: 29041575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An all-fiber image-reject homodyne coherent Doppler wind lidar.
    Abari CF; Pedersen AT; Mann J
    Opt Express; 2014 Oct; 22(21):25880-94. PubMed ID: 25401620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent and compact coherent Doppler lidar with fiber-based configuration for robust wind sensing in various atmospheric and environmental conditions.
    Kotake N; Sakamaki H; Imaki M; Miwa Y; Ando T; Yabugaki Y; Enjo M; Kameyama S
    Opt Express; 2022 May; 30(11):20038-20062. PubMed ID: 36221764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying cloud, precipitation, windshear, and turbulence by deep analysis of the power spectrum of coherent Doppler wind lidar.
    Yuan J; Xia H; Wei T; Wang L; Yue B; Wu Y
    Opt Express; 2020 Dec; 28(25):37406-37418. PubMed ID: 33379576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field performance of an all-semiconductor laser coherent Doppler lidar.
    Rodrigo PJ; Pedersen C
    Opt Lett; 2012 Jun; 37(12):2277-9. PubMed ID: 22739880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1.5 μm polarization coherent lidar incorporating time-division multiplexing.
    Wang C; Xia H; Shangguan M; Wu Y; Wang L; Zhao L; Qiu J; Zhang R
    Opt Express; 2017 Aug; 25(17):20663-20674. PubMed ID: 29041745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis.
    Wang Z; Liu Z; Liu L; Wu S; Liu B; Li Z; Chu X
    Appl Opt; 2010 Dec; 49(36):6960-78. PubMed ID: 21173831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Edge technique Doppler lidar wind measurements with high vertical resolution.
    Korb CL; Gentry BM; Li SX
    Appl Opt; 1997 Aug; 36(24):5976-83. PubMed ID: 18259439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reconfigurable all-fiber polarization-diversity coherent Doppler lidar: principles and numerical simulations.
    Abari CF; Chu X; Michael Hardesty R; Mann J
    Appl Opt; 2015 Oct; 54(30):8999-9009. PubMed ID: 26560390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle-Based Tracking of Cold Pool Gust Fronts.
    Henneberg O; Meyer B; Haerter JO
    J Adv Model Earth Syst; 2020 May; 12(5):e2019MS001910. PubMed ID: 32714494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach.
    Wu Y; Guo P; Chen S; Chen H; Zhang Y
    Appl Opt; 2017 Apr; 56(10):2705-2713. PubMed ID: 28375232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.
    Rao C; Liu H
    Bioinspir Biomim; 2018 Jul; 13(5):056002. PubMed ID: 29882513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hardware Implemented Autocorrelation Technique for Estimating Power Spectral Density for Processing Signals from a Doppler Wind Lidar System.
    Abdelazim S; Santoro D; Arend M; Moshary F; Ahmed S
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remote sensing of raindrop size distribution using the coherent Doppler lidar.
    Wei T; Xia H; Yue B; Wu Y; Liu Q
    Opt Express; 2021 May; 29(11):17246-17257. PubMed ID: 34154270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent Doppler lidar signal spectrum with wind turbulence.
    Frehlich R; Cornman L
    Appl Opt; 1999 Dec; 38(36):7456-66. PubMed ID: 18324299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent Doppler lidar signal covariance including wind shear and wind turbulence.
    Frehlich R
    Appl Opt; 1994 Sep; 33(27):6472-81. PubMed ID: 20941185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.