BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32225835)

  • 1. Optimizing an LED array for an infrared illumination source using the near field for venous pattern detection.
    Vargas-Treviño M; Gutierrez-Gutiérrez J; Rodríguez-Lelis JM; López Apreza E
    Appl Opt; 2020 Mar; 59(9):2858-2865. PubMed ID: 32225835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid near-infrared diffuse tomography for hemodynamic imaging using a low-coherence wideband light source.
    Piao D; Pogue BW
    J Biomed Opt; 2007; 12(1):014016. PubMed ID: 17343491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source.
    Ishikawa M; Katsura M; Nakashima S; Aizawa K; Inoue T; Okamura H; Ikemoto Y
    Opt Express; 2011 Jun; 19(13):12469-79. PubMed ID: 21716486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary Study for Designing a Novel Vein-Visualizing Device.
    Kim D; Kim Y; Yoon S; Lee D
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28178227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared imaging of subcutaneous veins.
    Zharov VP; Ferguson S; Eidt JF; Howard PC; Fink LM; Waner M
    Lasers Surg Med; 2004; 34(1):56-61. PubMed ID: 14755425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing veins from color images under varying illuminations for medical applications.
    Jia R; Tang C; Wang B
    J Biomed Opt; 2021 Sep; 26(9):. PubMed ID: 34541836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vein Pattern Locating Technology for Cannulation: A Review of the Low-Cost Vein Finder Prototypes Utilizing near Infrared (NIR) Light to Improve Peripheral Subcutaneous Vein Selection for Phlebotomy.
    Pan CT; Francisco MD; Yen CK; Wang SY; Shiue YL
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparameter wide-field integrated optical imaging system-based spatially modulated illumination and laser speckles in model of tissue injuries.
    Bloygrund H; Franjy-Tal Y; Rosenzweig T; Abookasis D
    J Biophotonics; 2019 Oct; 12(10):e201900141. PubMed ID: 31187933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovative algorithm to evaluate the capabilities of visual, near infrared, and infrared technologies for the detection of veins for intravenous cannulation.
    Asrar M; Al-Habaibeh A; Houda M
    Appl Opt; 2016 Dec; 55(34):D67-D75. PubMed ID: 27958441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Illumination pattern optimization for fluorescence tomography: theory and simulation studies.
    Dutta J; Ahn S; Joshi AA; Leahy RM
    Phys Med Biol; 2010 May; 55(10):2961-82. PubMed ID: 20436232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. THz emission microscopy with sub-wavelength broadband source.
    Lecaque R; Grésillon S; Boccara C
    Opt Express; 2008 Mar; 16(7):4731-8. PubMed ID: 18542570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-noise, high-brightness, tunable source of picosecond pulsed light in the near-infrared and visible.
    Mosley PJ; Bateman SA; Lavoute L; Wadsworth WJ
    Opt Express; 2011 Dec; 19(25):25337-45. PubMed ID: 22273925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vein Visualization With a Near Infrared Imaging Device and Its Impact on Students' and Nurses' Skills in an Academic Teaching University Hospital.
    Renno I; Horch RE; Ludolph I; Cai A; Arkudas A
    J Infus Nurs; 2024 Jul-Aug 01; 47(4):249-254. PubMed ID: 38968587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of optical sources in the near infrared for optical coherence tomography applications.
    Carrion L; Lestrade M; Xu Z; Touma G; Maciejko R; Bertrand M
    J Biomed Opt; 2007; 12(1):014017. PubMed ID: 17343492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sum-frequency generation of 589 nm light with near-unit efficiency.
    Mimoun E; De Sarlo L; Zondy JJ; Dalibard J; Gerbier F
    Opt Express; 2008 Nov; 16(23):18684-91. PubMed ID: 19581954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of 830 nm laser imaging for vein localization in dark skin tissue-mimicking phantoms.
    Bachir W; Abo Dargham F
    Phys Eng Sci Med; 2022 Mar; 45(1):135-142. PubMed ID: 34982404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective evaluation of venous access difficulty and a near-infrared vein visualizer at four French haemophilia treatment centres.
    Guillon P; Makhloufi M; Baillie S; Roucoulet C; Dolimier E; Masquelier AM
    Haemophilia; 2015 Jan; 21(1):21-6. PubMed ID: 25335191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-Infrared Vein Visualization in Index Finger Pollicization.
    Ficke BW; Ransom EF; Oakes JE
    J Hand Surg Am; 2017 Jun; 42(6):481.e1-481.e2. PubMed ID: 28450097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does infrared visualization improve selection of venipuncture sites for indwelling needle at the forearm in second-year nursing students?
    Fukuroku K; Narita Y; Taneda Y; Kobayashi S; Gayle AA
    Nurse Educ Pract; 2016 May; 18():1-9. PubMed ID: 27235559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An innovative approach to near-infrared spectroscopy using a standard mobile device and its clinical application in the real-time visualization of peripheral veins.
    Juric S; Zalik B
    BMC Med Inform Decis Mak; 2014 Nov; 14():100. PubMed ID: 25421099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.