These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32225897)

  • 1. Tunable infrared hot-electron photodetection by exciting gap-mode plasmons with wafer-scale gold nanohole arrays.
    Ding H; Wu S; Zhang C; Li L; Sun Q; Zhou L; Li X
    Opt Express; 2020 Mar; 28(5):6511-6520. PubMed ID: 32225897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanobowls-assisted broadband absorber for unbiased Si-based infrared photodetection.
    Zhou L; Zhang C; Li L; Liu T; Li K; Wu S; Li X
    Opt Express; 2021 May; 29(10):15505-15516. PubMed ID: 33985249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Area Fabrication of Complex Nanohole Arrays with Highly Tunable Plasmonic Properties.
    Wang Y; Chong HB; Zhang Z; Zhao Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37435-37443. PubMed ID: 32698576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar, narrowband, and tunable photodetection in the near-infrared with Au/TiO
    Yu T; Zhang C; Liu H; Liu J; Li K; Qin L; Wu S; Li X
    Nanoscale; 2019 Dec; 11(48):23182-23187. PubMed ID: 31777895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection.
    Nazirzadeh MA; Atar FB; Turgut BB; Okyay AK
    Sci Rep; 2014 Nov; 4():7103. PubMed ID: 25407509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-insensitive hot-electron infrared photodetection by double Schottky junction and multilayer grating.
    Zhang Q; Zhang C; Qin L; Li X
    Opt Lett; 2018 Jul; 43(14):3325-3328. PubMed ID: 30004497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarization-Insensitive Waveguide Schottky Photodetectors Based on Mode Hybridization Effects in Asymmetric Plasmonic Waveguides.
    Li Q; Tu J; Tian Y; Zhao Y
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33276491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planar Hot-Electron Photodetection with Tamm Plasmons.
    Zhang C; Wu K; Giannini V; Li X
    ACS Nano; 2017 Feb; 11(2):1719-1727. PubMed ID: 28117569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon-enhanced nanopillar photodetectors.
    Senanayake P; Hung CH; Shapiro J; Lin A; Liang B; Williams BS; Huffaker DL
    Nano Lett; 2011 Dec; 11(12):5279-83. PubMed ID: 22077757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a binary metal micron grating and its application in near-infrared hot-electron photodetectors.
    Hu XL; Li F; Xu SH; Liu WJ
    Opt Lett; 2023 Aug; 48(15):4033-4036. PubMed ID: 37527111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device.
    Sobhani A; Knight MW; Wang Y; Zheng B; King NS; Brown LV; Fang Z; Nordlander P; Halas NJ
    Nat Commun; 2013; 4():1643. PubMed ID: 23535664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot-electron injection in Au nanorod-ZnO nanowire hybrid device for near-infrared photodetection.
    Pescaglini A; Martín A; Cammi D; Juska G; Ronning C; Pelucchi E; Iacopino D
    Nano Lett; 2014 Nov; 14(11):6202-9. PubMed ID: 25313827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot Electron-Based Near-Infrared Photodetection Using Bilayer MoS2.
    Wang W; Klots A; Prasai D; Yang Y; Bolotin KI; Valentine J
    Nano Lett; 2015 Nov; 15(11):7440-4. PubMed ID: 26426510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical and physical optimization of nanohole-array sensors prepared by modified nanosphere lithography.
    Murray-Methot MP; Menegazzo N; Masson JF
    Analyst; 2008 Dec; 133(12):1714-21. PubMed ID: 19082074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultranarrow-bandwidth planar hot electron photodetector based on coupled dual Tamm plasmons.
    Liang W; Xiao Z; Xu H; Deng H; Li H; Chen W; Liu Z; Long Y
    Opt Express; 2020 Oct; 28(21):31330-31344. PubMed ID: 33115108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of gap plasmon resonance for high-responsivity metal-insulator-metal near-infrared hot-electron photodetectors.
    Hu X; Li F; Wu H; Liu W
    Opt Lett; 2022 Jan; 47(1):42-45. PubMed ID: 34951878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the Location of Surface Plasmons Over Nanotriangle and Nanohole Arrays of Different Size and Periodicity.
    Correia-Ledo D; Gibson KF; Dhawan A; Couture M; Vo-Dinh T; Graham D; Masson JF
    J Phys Chem C Nanomater Interfaces; 2012 Mar; 116(12):6884-6892. PubMed ID: 23977402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples.
    Genslein C; Hausler P; Kirchner EM; Bierl R; Baeumner AJ; Hirsch T
    Beilstein J Nanotechnol; 2016; 7():1564-1573. PubMed ID: 28144507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.