These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 32225938)
1. Investigation of aerosol absorption with dual-polarization lidar observations. Huang Z; Qi S; Zhou T; Dong Q; Ma X; Zhang S; Bi J; Shi J Opt Express; 2020 Mar; 28(5):7028-7035. PubMed ID: 32225938 [TBL] [Abstract][Full Text] [Related]
2. Classification of atmospheric aerosols and clouds by use of dual-polarization lidar measurements. Qi S; Huang Z; Ma X; Huang J; Zhou T; Zhang S; Dong Q; Bi J; Shi J Opt Express; 2021 Jul; 29(15):23461-23476. PubMed ID: 34614611 [TBL] [Abstract][Full Text] [Related]
3. Simulated depolarization ratios for dust and smoke at laser wavelengths: implications for lidar application. Huang Z; Shen X; Tang S; Zhou T; Dong Q; Zhang S; Li M; Wang Y Opt Express; 2023 Mar; 31(6):10541-10553. PubMed ID: 37157599 [TBL] [Abstract][Full Text] [Related]
4. Small lidar ratio of dust aerosol observed by Raman-polarization lidar near desert sources. Huang Z; Li M; Bi J; Shen X; Zhang S; Liu Q Opt Express; 2023 May; 31(10):16909-16919. PubMed ID: 37157759 [TBL] [Abstract][Full Text] [Related]
5. Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths. Sugimoto N; Lee CH Appl Opt; 2006 Oct; 45(28):7468-74. PubMed ID: 16983435 [TBL] [Abstract][Full Text] [Related]
6. Scanning vertical distributions of typical aerosols along the Yangtze River using elastic lidar. Fan S; Liu C; Xie Z; Dong Y; Hu Q; Fan G; Chen Z; Zhang T; Duan J; Zhang P; Liu J Sci Total Environ; 2018 Jul; 628-629():631-641. PubMed ID: 29454204 [TBL] [Abstract][Full Text] [Related]
7. Identification of fluorescent aerosol observed by a spectroscopic lidar over northwest China. Wang Y; Huang Z; Zhou T; Bi J; Shi J Opt Express; 2023 Jun; 31(13):22157-22169. PubMed ID: 37381296 [TBL] [Abstract][Full Text] [Related]
8. Visible, near-infrared dual-polarization lidar based on polarization cameras: system design, evaluation and atmospheric measurements. Kong Z; Yu J; Gong Z; Hua D; Mei L Opt Express; 2022 Aug; 30(16):28514-28533. PubMed ID: 36299045 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous profiling of dust aerosol mass concentration and optical properties with polarized high-spectral-resolution lidar. Xiao D; Wang N; Chen S; Wu L; Müller D; Veselovskii I; Li C; Landulfo E; Sivakumar V; Li J; Che H; Fang J; Zhang K; Wang B; Chen F; Hu X; Li X; Li W; Tong Y; Ke J; Wu L; Liu C; Liu D Sci Total Environ; 2023 May; 872():162091. PubMed ID: 36758704 [TBL] [Abstract][Full Text] [Related]
10. Six-channel multi-wavelength polarization Raman lidar for aerosol and water vapor profiling. Wang Z; Mao J; Li J; Zhao H; Zhou C; Sheng H Appl Opt; 2017 Jul; 56(20):5620-5629. PubMed ID: 29047703 [TBL] [Abstract][Full Text] [Related]
11. Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study. Papayannis A; Nicolae D; Kokkalis P; Binietoglou I; Talianu C; Belegante L; Tsaknakis G; Cazacu MM; Vetres I; Ilic L Sci Total Environ; 2014 Dec; 500-501():277-94. PubMed ID: 25226073 [TBL] [Abstract][Full Text] [Related]
12. [Characteristics of Aerosol Vertical Distribution over the Yangtze River Delta Region of China in 2018]. Shen J; Cao NW Huan Jing Ke Xue; 2019 Nov; 40(11):4743-4754. PubMed ID: 31854539 [TBL] [Abstract][Full Text] [Related]
13. Profiling Aerosol Liquid Water Content Using a Polarization Lidar. Tan W; Yu Y; Li C; Li J; Kang L; Dong H; Zeng L; Zhu T Environ Sci Technol; 2020 Mar; 54(6):3129-3137. PubMed ID: 32092257 [TBL] [Abstract][Full Text] [Related]
14. Development of an Automatic Polarization Raman LiDAR for Aerosol Monitoring over Complex Terrain. Wang L; Stanič S; Eichinger W; Song X; Zavrtanik M Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31331054 [TBL] [Abstract][Full Text] [Related]
15. Monitoring atmospheric particulate matters using vertically resolved measurements of a polarization lidar, in-situ recordings and satellite data over Tehran, Iran. Panahifar H; Moradhaseli R; Khalesifard HR Sci Rep; 2020 Nov; 10(1):20052. PubMed ID: 33208863 [TBL] [Abstract][Full Text] [Related]
16. [A floating-dust case study based on the vertical distribution of aerosol optical properties]. Wang Y; Deng JY; Shi LH; Chen YH; Zhang Q; Wang S; Xu TT Huan Jing Ke Xue; 2014 Mar; 35(3):830-8. PubMed ID: 24881367 [TBL] [Abstract][Full Text] [Related]
17. Lidar Ratio-Depolarization Ratio Relations of Atmospheric Dust Aerosols: The Super-Spheroid Model and High Spectral Resolution Lidar Observations. Kong S; Sato K; Bi L J Geophys Res Atmos; 2022 Feb; 127(4):e2021JD035629. PubMed ID: 35865334 [TBL] [Abstract][Full Text] [Related]
18. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China. Wang W; Gong W; Mao F; Pan Z; Liu B Int J Environ Res Public Health; 2016 May; 13(5):. PubMed ID: 27213414 [TBL] [Abstract][Full Text] [Related]
19. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. Sakai T; Nagai T; Nakazato M; Mano Y; Matsumura T Appl Opt; 2003 Dec; 42(36):7103-16. PubMed ID: 14717284 [TBL] [Abstract][Full Text] [Related]
20. Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements. Cho HM; Yang P; Kattawar GW; Nasiri SL; Hu Y; Minnis P; Trepte C; Winker D Opt Express; 2008 Mar; 16(6):3931-48. PubMed ID: 18542490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]