BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32225986)

  • 1. Quantum efficiency of plasmonic-coupled quantum dot infrared photodetectors for single- color detection: the upper limit of plasmonic enhancement.
    Lee SC; Kang JH; Park Q; Krishna S; Brueck SRJ
    Opt Express; 2020 Mar; 28(5):7618-7633. PubMed ID: 32225986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic-coupled quantum dot photodetectors for mid-infrared photonics.
    Lee SC; Krishna S; Jiang YB; Brueck SRJ
    Opt Express; 2021 Mar; 29(5):7145-7157. PubMed ID: 33726221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dot infrared photodetector enhanced by surface plasma wave excitation.
    Lee SC; Krishna S; Brueck SR
    Opt Express; 2009 Dec; 17(25):23160-8. PubMed ID: 20052244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement.
    Gu G; Vaillancourt J; Lu X
    Opt Express; 2014 Oct; 22(21):24970-6. PubMed ID: 25401530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress and prospects for quantum dots in a well infrared photodetectors.
    Vandervelde TE; Krishna S
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1450-60. PubMed ID: 20355535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Study on the Photoemission Performance of a Transmission Mode In
    Wang H; Linghu J; Zou P; Wang X; Shen H; Hai B
    Molecules; 2023 Jul; 28(13):. PubMed ID: 37446922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Photon Absorptivity of Quantum Dot Infrared Photodetectors Achieved by the Surface Plasmon Effect of Metal Nanohole Array.
    Liu H; Kang Y; Meng T; Tian C; Wei G
    Nanoscale Res Lett; 2020 May; 15(1):98. PubMed ID: 32372245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorption enhancement in all-semiconductor plasmonic cavity integrated THz quantum well infrared photodetectors.
    Deng J; Zheng Y; Zhou J; Li Z; Guo S; Dai X; Yu Y; Ji Z; Chu Z; Chen X; Lu W
    Opt Express; 2020 May; 28(11):16427-16438. PubMed ID: 32549466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors.
    Ku Z; Jang WY; Zhou J; Kim JO; Barve AV; Silva S; Krishna S; Brueck SR; Nelson R; Urbas A; Kang S; Lee SJ
    Opt Express; 2013 Feb; 21(4):4709-16. PubMed ID: 23482003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation of surface plasma waves in metal films perforated with n × n lattices of holes (n = 2 to 72).
    Lee SC; Brueck SRJ
    Opt Express; 2023 Nov; 31(24):40479-40489. PubMed ID: 38041347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-tunable dual-band quantum dot infrared photodetectors for temperature sensing.
    Ling HS; Wang SY; Hsu WC; Lee CP
    Opt Express; 2012 May; 20(10):10484-9. PubMed ID: 22565673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stacked Dual-Band Quantum Well Infrared Photodetector Based on Double-Layer Gold Disk Enhanced Local Light Field.
    Liu C; Zuo X; Xu S; Wang L; Xiong D
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. InAs quantum dots capped by GaAs, In0.4Ga0.6As dots, and In0.2Ga0.8As well.
    Fu Y; Wang SM; Ferdos F; Sadeghi M; Larsson A
    J Nanosci Nanotechnol; 2002; 2(3-4):421-6. PubMed ID: 12908273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermediate Field Coupling of Single Epitaxial Quantum Dots to Plasmonic Waveguides.
    Seidel M; Yang Y; Schumacher T; Huo Y; Covre da Silva SF; Rodt S; Rastelli A; Reitzenstein S; Lippitz M
    Nano Lett; 2023 Nov; 23(22):10532-10537. PubMed ID: 37917860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. InAs/GaAs quantum dot infrared photodetector on a Si substrate by means of metal wafer bonding and epitaxial lift-off.
    Kim H; Ahn SY; Kim S; Ryu G; Kyhm JH; Lee KW; Park JH; Choi WJ
    Opt Express; 2017 Jul; 25(15):17562-17570. PubMed ID: 28789248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure.
    Wong PS; Liang BL; Dorogan VG; Albrecht AR; Tatebayashi J; He X; Nuntawong N; Mazur YI; Salamo GJ; Brueck SR; Huffaker DL
    Nanotechnology; 2008 Oct; 19(43):435710. PubMed ID: 21832714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Enhanced Performance of an Infrared Detector Based on Carbon Nanotube Films.
    Huang H; Wang F; Liu Y; Wang S; Peng LM
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12743-12749. PubMed ID: 28322049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum dot infrared photodetector with gated-mode design for mid-IR single photon detection.
    Zavvari M; Ahmadi V
    Appl Opt; 2013 Nov; 52(32):7675-81. PubMed ID: 24216724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors.
    Ackerman MM; Tang X; Guyot-Sionnest P
    ACS Nano; 2018 Jul; 12(7):7264-7271. PubMed ID: 29975502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A monolithically integrated plasmonic infrared quantum dot camera.
    Lee SJ; Ku Z; Barve A; Montoya J; Jang WY; Brueck SR; Sundaram M; Reisinger A; Krishna S; Noh SK
    Nat Commun; 2011; 2():286. PubMed ID: 21505442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.