These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 32226207)
1. Towards understanding the influence of porosity on mechanical and fracture behaviour of quasi-brittle materials: experiments and modelling. Liu D; Šavija B; Smith GE; Flewitt PEJ; Lowe T; Schlangen E Int J Fract; 2017; 205(1):57-72. PubMed ID: 32226207 [TBL] [Abstract][Full Text] [Related]
2. Predicting the mechanical properties of brittle porous materials with various porosity and pore sizes. Cui Z; Huang Y; Liu H J Mech Behav Biomed Mater; 2017 Jul; 71():10-22. PubMed ID: 28259024 [TBL] [Abstract][Full Text] [Related]
4. In-situ X-ray Differential Micro-tomography for Investigation of Water-weakening in Quasi-brittle Materials Subjected to Four-point Bending. Koudelka P; Fila T; Rada V; Zlamal P; Sleichrt J; Vopalensky M; Kumpova I; Benes P; Vavrik D; Vavro L; Vavro M; Drdacky M; Kytyr D Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32244868 [TBL] [Abstract][Full Text] [Related]
5. Multi-scale damage modelling in a ceramic matrix composite using a finite-element microstructure meshfree methodology. Saucedo-Mora L; Marrow TJ Philos Trans A Math Phys Eng Sci; 2016 Jul; 374(2071):20150276. PubMed ID: 27242308 [TBL] [Abstract][Full Text] [Related]
6. Multiple Pseudo-Plastic Appearance of the Dynamic Fracture in Quasi-Brittle Materials. Riganti G; Cadoni E Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33167406 [TBL] [Abstract][Full Text] [Related]
7. Part II: fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials. Fan X; Case ED; Ren F; Shu Y; Baumann MJ J Mech Behav Biomed Mater; 2012 Apr; 8():99-110. PubMed ID: 22402157 [TBL] [Abstract][Full Text] [Related]
8. Strength-size relationships in two porous biological materials. Lauer C; Schmier S; Speck T; Nickel KG Acta Biomater; 2018 Sep; 77():322-332. PubMed ID: 29981496 [TBL] [Abstract][Full Text] [Related]
9. The bending strength of tablets with a breaking line--Comparison of the results of an elastic and a "brittle cracking" finite element model with experimental findings. Podczeck F; Newton JM; Fromme P Int J Pharm; 2015 Nov; 495(1):485-499. PubMed ID: 26363109 [TBL] [Abstract][Full Text] [Related]
10. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis. Barui S; Chatterjee S; Mandal S; Kumar A; Basu B Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959 [TBL] [Abstract][Full Text] [Related]
11. Interface shear strength and fracture behaviour of porous glass-fibre-reinforced composite implant and bone model material. Nganga S; Ylä-Soininmäki A; Lassila LV; Vallittu PK J Mech Behav Biomed Mater; 2011 Nov; 4(8):1797-804. PubMed ID: 22098879 [TBL] [Abstract][Full Text] [Related]
12. Application of a Closed-Form Model in Analyzing the Fracture of Quasi-Brittle Materials. Han X; Li P; Liu J Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255450 [TBL] [Abstract][Full Text] [Related]
13. Mechanical properties of contemporary composite resins and their interrelations. Thomaidis S; Kakaboura A; Mueller WD; Zinelis S Dent Mater; 2013 Aug; 29(8):e132-41. PubMed ID: 23790281 [TBL] [Abstract][Full Text] [Related]
14. Different models for simulation of mechanical behaviour of porous materials. Muñoz S; Castillo SM; Torres Y J Mech Behav Biomed Mater; 2018 Apr; 80():88-96. PubMed ID: 29414480 [TBL] [Abstract][Full Text] [Related]
15. The use of fractography to supplement analysis of bone mechanical properties in different strains of mice. Wise LM; Wang Z; Grynpas MD Bone; 2007 Oct; 41(4):620-30. PubMed ID: 17690026 [TBL] [Abstract][Full Text] [Related]
16. On prediction of the compressive strength and failure patterns of human vertebrae using a quasi-brittle continuum damage finite element model. Nakhli Z; Hatira FB; Pithioux M; Chabrand P; Saanouni K Acta Bioeng Biomech; 2019; 21(2):143-151. PubMed ID: 31741469 [TBL] [Abstract][Full Text] [Related]
17. Structure-Processing-Property Relationships of 3D Printed Porous Polymeric Materials. Cipriani CE; Ha T; Martinez Defilló OB; Myneni M; Wang Y; Benjamin CC; Wang J; Pentzer EB; Wei P ACS Mater Au; 2021 Sep; 1(1):69-80. PubMed ID: 36855618 [TBL] [Abstract][Full Text] [Related]
18. Fracture Toughness, Breakthrough Morphology, Microstructural Analysis of the T2 Copper-45 Steel Welded Joints. Ding H; Huang Q; Liu P; Bao Y; Chai G Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31968586 [TBL] [Abstract][Full Text] [Related]
19. Deformation behavior of porous PHBV scaffold in compression: A finite element analysis study. Patel R; Lu M; Diermann SH; Wu A; Pettit A; Huang H J Mech Behav Biomed Mater; 2019 Aug; 96():1-8. PubMed ID: 31015108 [TBL] [Abstract][Full Text] [Related]
20. Elucidating the Effect of Accelerated Carbonation on Porosity and Mechanical Properties of Hydrated Portland Cement Paste Using X-Ray Tomography and Advanced Micromechanical Testing. Zhang H; Rodriguez CR; Dong H; Gan Y; Schlangen E; Šavija B Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32365725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]