BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 32226594)

  • 1. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for
    Afantitis A; Melagraki G; Isigonis P; Tsoumanis A; Varsou DD; Valsami-Jones E; Papadiamantis A; Ellis LA; Sarimveis H; Doganis P; Karatzas P; Tsiros P; Liampa I; Lobaskin V; Greco D; Serra A; Kinaret PAS; Saarimäki LA; Grafström R; Kohonen P; Nymark P; Willighagen E; Puzyn T; Rybinska-Fryca A; Lyubartsev A; Alstrup Jensen K; Brandenburg JG; Lofts S; Svendsen C; Harrison S; Maier D; Tamm K; Jänes J; Sikk L; Dusinska M; Longhin E; Rundén-Pran E; Mariussen E; El Yamani N; Unger W; Radnik J; Tropsha A; Cohen Y; Leszczynski J; Ogilvie Hendren C; Wiesner M; Winkler D; Suzuki N; Yoon TH; Choi JS; Sanabria N; Gulumian M; Lynch I
    Comput Struct Biotechnol J; 2020; 18():583-602. PubMed ID: 32226594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FAIRification of nanosafety data to improve applicability of (Q)SAR approaches: A case study on
    Bossa C; Andreoli C; Bakker M; Barone F; De Angelis I; Jeliazkova N; Nymark P; Battistelli CL
    Comput Toxicol; 2021 Nov; 20():100190. PubMed ID: 34820591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network.
    Spînu N; Cronin MTD; Lao J; Bal-Price A; Campia I; Enoch SJ; Madden JC; Mora Lagares L; Novič M; Pamies D; Scholz S; Villeneuve DL; Worth AP
    Comput Toxicol; 2022 Feb; 21():100206. PubMed ID: 35211661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can an InChI for Nano Address the Need for a Simplified Representation of Complex Nanomaterials across Experimental and Nanoinformatics Studies?
    Lynch I; Afantitis A; Exner T; Himly M; Lobaskin V; Doganis P; Maier D; Sanabria N; Papadiamantis AG; Rybinska-Fryca A; Gromelski M; Puzyn T; Willighagen E; Johnston BD; Gulumian M; Matzke M; Green Etxabe A; Bossa N; Serra A; Liampa I; Harper S; Tämm K; Jensen AC; Kohonen P; Slater L; Tsoumanis A; Greco D; Winkler DA; Sarimveis H; Melagraki G
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33322568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From papers to RDF-based integration of physicochemical data and adverse outcome pathways for nanomaterials.
    van Rijn JPM; Martens M; Ammar A; Cimpan MR; Fessard V; Hoet P; Jeliazkova N; Murugadoss S; Vinković Vrček I; Willighagen EL
    J Cheminform; 2024 May; 16(1):49. PubMed ID: 38693555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A safe-by-design tool for functionalised nanomaterials through the Enalos Nanoinformatics Cloud platform.
    Varsou DD; Afantitis A; Tsoumanis A; Melagraki G; Sarimveis H; Valsami-Jones E; Lynch I
    Nanoscale Adv; 2019 Feb; 1(2):706-718. PubMed ID: 36132268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecotoxicological read-across models for predicting acute toxicity of freshly dispersed versus medium-aged NMs to Daphnia magna.
    Varsou DD; Ellis LA; Afantitis A; Melagraki G; Lynch I
    Chemosphere; 2021 Dec; 285():131452. PubMed ID: 34265725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The eNanoMapper database for nanomaterial safety information.
    Jeliazkova N; Chomenidis C; Doganis P; Fadeel B; Grafström R; Hardy B; Hastings J; Hegi M; Jeliazkov V; Kochev N; Kohonen P; Munteanu CR; Sarimveis H; Smeets B; Sopasakis P; Tsiliki G; Vorgrimmler D; Willighagen E
    Beilstein J Nanotechnol; 2015; 6():1609-34. PubMed ID: 26425413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking nanomaterial-induced mitochondrial dysfunction to existing adverse outcome pathways for chemicals.
    Murugadoss S; Vinković Vrček I; Schaffert A; Paparella M; Pem B; Sosnowska A; Stępnik M; Martens M; Willighagen EL; Puzyn T; Roxana Cimpan M; Lemaire F; Mertens B; Dusinska M; Fessard V; Hoet PH
    ALTEX; 2024 Jan; 41(1):76-90. PubMed ID: 37606097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A data reusability assessment in the nanosafety domain based on the NSDRA framework followed by an exploratory quantitative structure activity relationships (QSAR) modeling targeting cellular viability.
    Furxhi I; Willighagen E; Evelo C; Costa A; Gardini D; Ammar A
    NanoImpact; 2023 Jul; 31():100475. PubMed ID: 37423508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of physicochemical properties of nanomaterials and their immediate environments in high-throughput screening of nanomaterial biological activity.
    Wang A; Marinakos SM; Badireddy AR; Powers CM; Houck KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(5):430-48. PubMed ID: 23661551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial augmented dataset for the enhancement of nano-QSARs models. A methodology based on topological projections.
    Furxhi I; Kalapus M; Costa A; Puzyn T
    Nanotoxicology; 2023; 17(6-7):529-544. PubMed ID: 37885250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles and requirements for nanomaterial representations to facilitate machine processing and cooperation with nanoinformatics tools.
    Blekos K; Chairetakis K; Lynch I; Marcoulaki E
    J Cheminform; 2023 Apr; 15(1):44. PubMed ID: 37046286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatics and machine learning to support nanomaterial grouping.
    Bahl A; Halappanavar S; Wohlleben W; Nymark P; Kohonen P; Wallin H; Vogel U; Haase A
    Nanotoxicology; 2024 Jul; ():1-28. PubMed ID: 38949108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-QSPR Modelling of Carbon-Based Nanomaterials Properties.
    Salahinejad M
    Curr Top Med Chem; 2015; 15(18):1868-86. PubMed ID: 25961518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representing and describing nanomaterials in predictive nanoinformatics.
    Wyrzykowska E; Mikolajczyk A; Lynch I; Jeliazkova N; Kochev N; Sarimveis H; Doganis P; Karatzas P; Afantitis A; Melagraki G; Serra A; Greco D; Subbotina J; Lobaskin V; Bañares MA; Valsami-Jones E; Jagiello K; Puzyn T
    Nat Nanotechnol; 2022 Sep; 17(9):924-932. PubMed ID: 35982314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards AOP application--implementation of an integrated approach to testing and assessment (IATA) into a pipeline tool for skin sensitization.
    Patlewicz G; Kuseva C; Kesova A; Popova I; Zhechev T; Pavlov T; Roberts DW; Mekenyan O
    Regul Toxicol Pharmacol; 2014 Aug; 69(3):529-45. PubMed ID: 24928565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metadata Stewardship in Nanosafety Research: Community-Driven Organisation of Metadata Schemas to Support FAIR Nanoscience Data.
    Papadiamantis AG; Klaessig FC; Exner TE; Hofer S; Hofstaetter N; Himly M; Williams MA; Doganis P; Hoover MD; Afantitis A; Melagraki G; Nolan TS; Rumble J; Maier D; Lynch I
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33076428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concern-driven integrated approaches to nanomaterial testing and assessment--report of the NanoSafety Cluster Working Group 10.
    Oomen AG; Bos PM; Fernandes TF; Hund-Rinke K; Boraschi D; Byrne HJ; Aschberger K; Gottardo S; von der Kammer F; Kühnel D; Hristozov D; Marcomini A; Migliore L; Scott-Fordsmand J; Wick P; Landsiedel R
    Nanotoxicology; 2014 May; 8(3):334-48. PubMed ID: 23641967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.