BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 32226788)

  • 1. Mechanical Regulation of Nuclear Translocation in Migratory Neurons.
    Nakazawa N; Kengaku M
    Front Cell Dev Biol; 2020; 8():150. PubMed ID: 32226788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoskeletal control of nuclear migration in neurons and non-neuronal cells.
    Kengaku M
    Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(9):337-349. PubMed ID: 30416174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forces to Drive Neuronal Migration Steps.
    Minegishi T; Inagaki N
    Front Cell Dev Biol; 2020; 8():863. PubMed ID: 32984342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Interaction Between Microtubules and the Nucleus Regulates Nuclear Movement During Neuronal Migration.
    Wu YK; Kengaku M
    J Exp Neurosci; 2018; 12():1179069518789151. PubMed ID: 30022851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Squish and squeeze-the nucleus as a physical barrier during migration in confined environments.
    McGregor AL; Hsia CR; Lammerding J
    Curr Opin Cell Biol; 2016 Jun; 40():32-40. PubMed ID: 26895141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local traction force in the proximal leading process triggers nuclear translocation during neuronal migration.
    Umeshima H; Nomura KI; Yoshikawa S; Hörning M; Tanaka M; Sakuma S; Arai F; Kaneko M; Kengaku M
    Neurosci Res; 2019 May; 142():38-48. PubMed ID: 29627503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nesprins and opposing microtubule motors generate a point force that drives directional nuclear motion in migrating neurons.
    Wu YK; Umeshima H; Kurisu J; Kengaku M
    Development; 2018 Mar; 145(5):. PubMed ID: 29519888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclei migrate through constricted spaces using microtubule motors and actin networks in C. elegans hypodermal cells.
    Bone CR; Chang YT; Cain NE; Murphy SP; Starr DA
    Development; 2016 Nov; 143(22):4193-4202. PubMed ID: 27697906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active mechanical coupling between the nucleus, cytoskeleton and the extracellular matrix, and the implications for perinuclear actomyosin organization.
    Zemel A
    Soft Matter; 2015 Mar; 11(12):2353-63. PubMed ID: 25652010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In the middle of it all: mutual mechanical regulation between the nucleus and the cytoskeleton.
    Dahl KN; Booth-Gauthier EA; Ladoux B
    J Biomech; 2010 Jan; 43(1):2-8. PubMed ID: 19804886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of contractile forces generated in disorganized actomyosin bundles.
    Kim T
    Biomech Model Mechanobiol; 2015 Apr; 14(2):345-55. PubMed ID: 25103419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization.
    Keeling MC; Flores LR; Dodhy AH; Murray ER; Gavara N
    Sci Rep; 2017 Jul; 7(1):5219. PubMed ID: 28701767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging roles for motor proteins in progenitor cell behavior and neuronal migration during brain development.
    Dantas TJ; Carabalona A; Hu DJ; Vallee RB
    Cytoskeleton (Hoboken); 2016 Oct; 73(10):566-576. PubMed ID: 26994401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New approaches for understanding the nuclear force balance in living, adherent cells.
    Neelam S; Dickinson RB; Lele TP
    Methods; 2016 Feb; 94():27-32. PubMed ID: 26115785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How does Reelin signaling regulate the neuronal cytoskeleton during migration?
    Chai X; Frotscher M
    Neurogenesis (Austin); 2016; 3(1):e1242455. PubMed ID: 28265585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.
    Lee H; Adams WJ; Alford PW; McCain ML; Feinberg AW; Sheehy SP; Goss JA; Parker KK
    Exp Biol Med (Maywood); 2015 Nov; 240(11):1543-54. PubMed ID: 25908635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drebrin-mediated microtubule-actomyosin coupling steers cerebellar granule neuron nucleokinesis and migration pathway selection.
    Trivedi N; Stabley DR; Cain B; Howell D; Laumonnerie C; Ramahi JS; Temirov J; Kerekes RA; Gordon-Weeks PR; Solecki DJ
    Nat Commun; 2017 Feb; 8():14484. PubMed ID: 28230156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear Mechanics in the Fission Yeast.
    Gallardo P; Barrales RR; Daga RR; Salas-Pino S
    Cells; 2019 Oct; 8(10):. PubMed ID: 31635174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics.
    Kumar S; Maxwell IZ; Heisterkamp A; Polte TR; Lele TP; Salanga M; Mazur E; Ingber DE
    Biophys J; 2006 May; 90(10):3762-73. PubMed ID: 16500961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.