These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 32226859)

  • 1. α-Ag
    Zhou WX; Wu D; Xie G; Chen KQ; Zhang G
    ACS Omega; 2020 Mar; 5(11):5796-5804. PubMed ID: 32226859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into Scattering Mechanisms and Transport Properties of AgCuS for Flexible Thermoelectric Applications.
    Nam HN; Phung QM; Suzuki K; Masago A; Shinya H; Fukushima T; Sato K
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43871-43879. PubMed ID: 37676926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic defect formation and the effect of transition metal doping on transport properties in a ductile thermoelectric material α-Ag
    Ngoc Nam H; Yamada R; Okumura H; Nguyen TQ; Suzuki K; Shinya H; Masago A; Fukushima T; Sato K
    Phys Chem Chem Phys; 2021 Apr; 23(16):9773-9784. PubMed ID: 33725034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralow lattice thermal conductivity and dramatically enhanced thermoelectric properties of monolayer InSe induced by an external electric field.
    Chang Z; Yuan K; Sun Z; Zhang X; Gao Y; Qin G; Tang D
    Phys Chem Chem Phys; 2021 Jun; 23(24):13633-13646. PubMed ID: 34116567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the Thermoelectric Properties of BaTiS
    Paudel TR; Tsymbal EY
    ACS Omega; 2020 Jun; 5(21):12385-12390. PubMed ID: 32548422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High In-Plane Thermoelectric Performance of Layered Bi
    Jiao W; Han S; Yuan H; Lei W; Liu H
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):38147-38152. PubMed ID: 39011736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Thermoelectric Performance of As-Grown Suspended Graphene Nanoribbons.
    Li QY; Feng T; Okita W; Komori Y; Suzuki H; Kato T; Kaneko T; Ikuta T; Ruan X; Takahashi K
    ACS Nano; 2019 Aug; 13(8):9182-9189. PubMed ID: 31411858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain-induced enhancement in the electronic and thermal transport properties of the tin sulphide bilayer.
    Nag S; Singh R; Kumar R
    Phys Chem Chem Phys; 2021 Dec; 24(1):211-221. PubMed ID: 34878461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.
    Rhyee JS; Kim JH
    Materials (Basel); 2015 Mar; 8(3):1283-1324. PubMed ID: 28788002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance.
    Lin H; Tan G; Shen JN; Hao S; Wu LM; Calta N; Malliakas C; Wang S; Uher C; Wolverton C; Kanatzidis MG
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11431-6. PubMed ID: 27513458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultralow lattice thermal conductivity and high thermoelectric performance of monolayer KCuTe: a first principles study.
    Gu J; Huang L; Liu S
    RSC Adv; 2019 Nov; 9(62):36301-36307. PubMed ID: 35540616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-Induced Ultrahigh Electron Mobility and Thermoelectric Figure of Merit in Monolayer α-Te.
    Ma J; Meng F; He J; Jia Y; Li W
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43901-43910. PubMed ID: 32870654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low lattice thermal conductivity and excellent thermoelectric behavior in Li
    Yang X; Dai Z; Zhao Y; Liu J; Meng S
    J Phys Condens Matter; 2018 Oct; 30(42):425401. PubMed ID: 30168447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uniaxial Tensile Strain Induced the Enhancement of Thermoelectric Properties in
    Zou C; Lei C; Zou D; Liu Y
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32283714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monolayer β-tellurene: a promising p-type thermoelectric material via first-principles calculations.
    Sang DK; Ding T; Wu MN; Li Y; Li J; Liu F; Guo Z; Zhang H; Xie H
    Nanoscale; 2019 Oct; 11(39):18116-18123. PubMed ID: 31482929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Thermoelectric Properties of Monolayer MAs
    Wei QL; Yang HY; Wu YY; Liu YB; Li YH
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33081158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoelectric performance of ZrNX (X = Cl, Br and I) monolayers.
    Shi W; Ge N; Wang X; Wang Z
    Phys Chem Chem Phys; 2021 Dec; 24(1):560-567. PubMed ID: 34904983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe.
    Lin W; He J; Su X; Zhang X; Xia Y; Bailey TP; Stoumpos CC; Tan G; Rettie AJE; Chung DY; Dravid VP; Uher C; Wolverton C; Kanatzidis MG
    Adv Mater; 2021 Nov; 33(44):e2104908. PubMed ID: 34523151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remarkably High Thermoelectric Efficiencies of the Half-Heusler Compounds BXGa (X = Be, Mg, and Ca).
    Sun HL; Yang CL; Wang MS; Ma XG
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5838-5846. PubMed ID: 31922710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monolayer SnI
    Xie QY; Liu PF; Ma JJ; Kuang FG; Zhang KW; Wang BT
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.