These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
460 related articles for article (PubMed ID: 32226859)
21. High Thermoelectric Performance of In Yin X; Liu JY; Chen L; Wu LM Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668 [TBL] [Abstract][Full Text] [Related]
22. Ultralow lattice thermal conductivity induced high thermoelectric performance in the δ-Cu Yu J; Li T; Nie G; Zhang BP; Sun Q Nanoscale; 2019 May; 11(21):10306-10313. PubMed ID: 31099817 [TBL] [Abstract][Full Text] [Related]
23. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons. Deng S; Li L; Guy OJ; Zhang Y Phys Chem Chem Phys; 2019 Aug; 21(33):18161-18169. PubMed ID: 31389445 [TBL] [Abstract][Full Text] [Related]
24. Theoretical analysis of the thermoelectric properties of penta-PdX2 (X = Se, Te) monolayer. Li L; Huang Z; Xu J; Huang H Front Chem; 2022; 10():1061703. PubMed ID: 36426101 [TBL] [Abstract][Full Text] [Related]
25. Synergistically Enhanced Thermoelectric Performance of Cu Cheng X; Yang D; Su X; Xie H; Liu W; Zheng Y; Tang X ACS Appl Mater Interfaces; 2021 Nov; 13(46):55178-55187. PubMed ID: 34783236 [TBL] [Abstract][Full Text] [Related]
26. First-principles study on bilayer SnP Song H; Zhang X; Yuan P; Hu W; Gao Z Phys Chem Chem Phys; 2022 Dec; 24(48):29693-29699. PubMed ID: 36453524 [TBL] [Abstract][Full Text] [Related]
27. The potential thermoelectric material Tl Li B; Zhang C; Sun Z; Han T; Zhang X; Du J; Wang J; Xiao X; Wang N Phys Chem Chem Phys; 2022 Oct; 24(39):24447-24456. PubMed ID: 36190779 [TBL] [Abstract][Full Text] [Related]
28. High thermoelectric figure of merit and thermopower of HfTe Jia K; Yang CL; Wang MS; Ma XG J Phys Condens Matter; 2020 May; 32(34):. PubMed ID: 32252030 [TBL] [Abstract][Full Text] [Related]
29. Ultralow Thermal Conductivity and Extraordinary Thermoelectric Performance Realized in Codoped Cu Li D; Ming HW; Li JM; Jabar B; Xu W; Zhang J; Qin XY ACS Appl Mater Interfaces; 2020 Jan; 12(3):3886-3892. PubMed ID: 31854185 [TBL] [Abstract][Full Text] [Related]
30. Y Brlec K; Spooner KB; Skelton JM; Scanlon DO J Mater Chem A Mater; 2022 Aug; 10(32):16813-16824. PubMed ID: 36092377 [TBL] [Abstract][Full Text] [Related]
31. High Thermoelectric Performance in Two-Dimensional Janus Monolayer Material WS-X ( Patel A; Singh D; Sonvane Y; Thakor PB; Ahuja R ACS Appl Mater Interfaces; 2020 Oct; 12(41):46212-46219. PubMed ID: 32931245 [TBL] [Abstract][Full Text] [Related]
32. The thermoelectric properties of CdBr, CdI, and Janus Cd Wu YL; Yang Q; Geng HY; Cheng Y Phys Chem Chem Phys; 2024 Feb; 26(8):6956-6966. PubMed ID: 38334722 [TBL] [Abstract][Full Text] [Related]
33. Synergistic Approach Toward a Reproducible High zT in n-Type and p-Type Superionic Thermoelectric Ag Jakhar N; Bisht N; Katre A; Singh S ACS Appl Mater Interfaces; 2022 Dec; 14(48):53916-53927. PubMed ID: 36398970 [TBL] [Abstract][Full Text] [Related]
35. Sn-Doping-Induced Biphasic Structure Advances Ductile Ag Wu H; Shi XL; Mao Y; Li M; Wu T; Wang DZ; Yin LC; Zhu M; Liu WD; Wang L; Wang Y; Duan J; Liu Q; Chen ZG Adv Sci (Weinh); 2024 Nov; 11(43):e2408374. PubMed ID: 39324659 [TBL] [Abstract][Full Text] [Related]
36. Ultralow thermal conductivity and anisotropic thermoelectric performance in layered materials LaMOCh (M = Cu, Ag; Ch = S, Se). Ma JJ; Liu QY; Liu PF; Zhang P; Sanyal B; Ouyang T; Wang BT Phys Chem Chem Phys; 2022 Sep; 24(35):21261-21269. PubMed ID: 36040434 [TBL] [Abstract][Full Text] [Related]
37. Strong anisotropy of Sc Song X; Chen X; Wang G; Zhou L; Yang H; Li X; Yang H; Shen Y; Luo Y; Wang N Phys Chem Chem Phys; 2023 Sep; 25(36):24332-24341. PubMed ID: 37670676 [TBL] [Abstract][Full Text] [Related]
38. Dynamical approach to the atomic and electronic structures of the ductile semiconductor Ag2S. Wuliji H; Ma Y; Chen H; Wei TR; Zhao K; Sun YY; Shi X J Chem Phys; 2023 Jun; 158(24):. PubMed ID: 37358218 [TBL] [Abstract][Full Text] [Related]
39. Lattice Strain Leads to High Thermoelectric Performance in Polycrystalline SnSe. Lou X; Li S; Chen X; Zhang Q; Deng H; Zhang J; Li D; Zhang X; Zhang Y; Zeng H; Tang G ACS Nano; 2021 May; 15(5):8204-8215. PubMed ID: 33852270 [TBL] [Abstract][Full Text] [Related]
40. First-principles prediction of large thermoelectric efficiency in superionic Li Haque E; Cazorla C; Hossain MA Phys Chem Chem Phys; 2020 Jan; 22(2):878-889. PubMed ID: 31844875 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]