These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 32227017)
21. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries. Dong C; Xu L ACS Appl Mater Interfaces; 2017 Mar; 9(8):7160-7168. PubMed ID: 28166402 [TBL] [Abstract][Full Text] [Related]
22. Confine, Defect, and Interface Manipulation of Fe Liu Y; Wan Q; Gong J; Liu Z; Tao G; Zhao J; Chen L; Li W; Wei X; Ni L; Song Y Small; 2023 Feb; 19(8):e2206400. PubMed ID: 36504297 [TBL] [Abstract][Full Text] [Related]
24. Exploration of bifunctional Vanadium-based Metal-Organic framework with double active centers for Potassium-ion batteries. Deng Q; Wang R; Wang Y; Yang Z; Gou B; Li J; Yan Y; Yang R J Colloid Interface Sci; 2022 Dec; 628(Pt B):556-565. PubMed ID: 36007420 [TBL] [Abstract][Full Text] [Related]
25. [Co Yang GP; Luo XX; Liu YF; Li K; Wu XL ACS Appl Mater Interfaces; 2021 Oct; 13(39):46902-46908. PubMed ID: 34550671 [TBL] [Abstract][Full Text] [Related]
26. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650 [TBL] [Abstract][Full Text] [Related]
27. Control of SEI Formation for Stable Potassium-Ion Battery Anodes by Bi-MOF-Derived Nanocomposites. Su S; Liu Q; Wang J; Fan L; Ma R; Chen S; Han X; Lu B ACS Appl Mater Interfaces; 2019 Jun; 11(25):22474-22480. PubMed ID: 31141334 [TBL] [Abstract][Full Text] [Related]
28. FeSb Wu Y; Sun Y; Tong Y; Li H Small; 2022 Jun; 18(24):e2201934. PubMed ID: 35561065 [TBL] [Abstract][Full Text] [Related]
29. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries. Luo C; Xu GL; Ji X; Hou S; Chen L; Wang F; Jiang J; Chen Z; Ren Y; Amine K; Wang C Angew Chem Int Ed Engl; 2018 Mar; 57(11):2879-2883. PubMed ID: 29378088 [TBL] [Abstract][Full Text] [Related]
30. Electrospun VSe Xu L; Xiong P; Zeng L; Fang Y; Liu R; Liu J; Luo F; Chen Q; Wei M; Qian Q Nanoscale; 2019 Sep; 11(35):16308-16316. PubMed ID: 31322634 [TBL] [Abstract][Full Text] [Related]
31. Conductive Metal-Organic Framework with Superior Redox Activity as a Stable High-Capacity Anode for High-Temperature K-Ion Batteries. Yang M; Zeng X; Xie M; Wang Y; Xiao JM; Chen RH; Yi ZJ; Huang YF; Bin DS; Li D J Am Chem Soc; 2024 Mar; 146(10):6753-6762. PubMed ID: 38412236 [TBL] [Abstract][Full Text] [Related]
32. Azo compounds as a family of organic electrode materials for alkali-ion batteries. Luo C; Borodin O; Ji X; Hou S; Gaskell KJ; Fan X; Chen J; Deng T; Wang R; Jiang J; Wang C Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2004-2009. PubMed ID: 29440381 [TBL] [Abstract][Full Text] [Related]
33. In situ growth of MOFs on the surface of si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion batteries. Han Y; Qi P; Feng X; Li S; Fu X; Li H; Chen Y; Zhou J; Li X; Wang B ACS Appl Mater Interfaces; 2015 Feb; 7(4):2178-82. PubMed ID: 25574972 [TBL] [Abstract][Full Text] [Related]
34. Co3V2O8 Sponge Network Morphology Derived from Metal-Organic Framework as an Excellent Lithium Storage Anode Material. Soundharrajan V; Sambandam B; Song J; Kim S; Jo J; Kim S; Lee S; Mathew V; Kim J ACS Appl Mater Interfaces; 2016 Apr; 8(13):8546-53. PubMed ID: 26983348 [TBL] [Abstract][Full Text] [Related]
35. Flexible Membrane Consisting of MoP Ultrafine Nanoparticles Highly Distributed Inside N and P Codoped Carbon Nanofibers as High-Performance Anode for Potassium-Ion Batteries. Yi Z; Liu Y; Li Y; Zhou L; Wang Z; Zhang J; Cheng H; Lu Z Small; 2020 Jan; 16(2):e1905301. PubMed ID: 31821704 [TBL] [Abstract][Full Text] [Related]
36. Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode. McCulloch WD; Ren X; Yu M; Huang Z; Wu Y ACS Appl Mater Interfaces; 2015 Dec; 7(47):26158-66. PubMed ID: 26550678 [TBL] [Abstract][Full Text] [Related]
37. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Zheng F; Xia G; Yang Y; Chen Q Nanoscale; 2015 Jun; 7(21):9637-45. PubMed ID: 25955439 [TBL] [Abstract][Full Text] [Related]
38. Few-Layered Boronic Ester Based Covalent Organic Frameworks/Carbon Nanotube Composites for High-Performance K-Organic Batteries. Chen X; Zhang H; Ci C; Sun W; Wang Y ACS Nano; 2019 Mar; 13(3):3600-3607. PubMed ID: 30807104 [TBL] [Abstract][Full Text] [Related]
39. 3D Sulfur and Nitrogen Codoped Carbon Nanofiber Aerogels with Optimized Electronic Structure and Enlarged Interlayer Spacing Boost Potassium-Ion Storage. Lv C; Xu W; Liu H; Zhang L; Chen S; Yang X; Xu X; Yang D Small; 2019 Jun; 15(23):e1900816. PubMed ID: 31021514 [TBL] [Abstract][Full Text] [Related]
40. K Zhang Y; Niu X; Tan L; Deng L; Jin S; Zeng L; Xu H; Zhu Y ACS Appl Mater Interfaces; 2020 Feb; 12(8):9332-9340. PubMed ID: 31999423 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]