These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32227026)

  • 21. Facile Construction of Metal Phosphides (MP, M = Co, Ni, Fe, and Cu) Wrapped in Three-Dimensional N,P-Codoped Carbon Skeleton toward Highly Efficient Hydrogen Evolution Catalysis and Lithium-Ion Storage.
    Zhao Z; Zhu Z; Bao X; Wang F; Li S; Liu S; Yang Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9820-9829. PubMed ID: 33599483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon-coated Fe-Mn-O composites as promising anode materials for lithium-ion batteries.
    Li T; Wang YY; Tang R; Qi YX; Lun N; Bai YJ; Fan RH
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9470-7. PubMed ID: 24007324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ti-Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors.
    Lou S; Zhao Y; Wang J; Yin G; Du C; Sun X
    Small; 2019 Dec; 15(52):e1904740. PubMed ID: 31778036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Confined nanospace pyrolysis for the fabrication of coaxial Fe3O4@C hollow particles with a penetrated mesochannel as a superior anode for Li-ion batteries.
    Lei C; Han F; Sun Q; Li WC; Lu AH
    Chemistry; 2014 Jan; 20(1):139-45. PubMed ID: 24273057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes.
    Lei C; Han F; Li D; Li WC; Sun Q; Zhang XQ; Lu AH
    Nanoscale; 2013 Feb; 5(3):1168-75. PubMed ID: 23292140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanostructured Iron Fluoride Derived from Fe-Based Metal-Organic Framework for Lithium Ion Battery Cathodes.
    Cheng Q; Pan Y; Chen Y; Zeb A; Lin X; Yuan Z; Liu J
    Inorg Chem; 2020 Sep; 59(17):12700-12710. PubMed ID: 32806004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4.
    Hariharan S; Saravanan K; Ramar V; Balaya P
    Phys Chem Chem Phys; 2013 Feb; 15(8):2945-53. PubMed ID: 23340646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fe
    Jeon Y; Lee J; Kim M; Oh J; Hwang T; Piao Y
    Nanoscale; 2019 Mar; 11(11):4837-4845. PubMed ID: 30816391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Core-Shell Fe/Fe2 O3 Nanowire as a High-Performance Anode Material for Lithium-Ion Batteries.
    Na Z; Huang G; Liang F; Yin D; Wang L
    Chemistry; 2016 Aug; 22(34):12081-7. PubMed ID: 27406922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries.
    Wang JZ; Zhong C; Wexler D; Idris NH; Wang ZX; Chen LQ; Liu HK
    Chemistry; 2011 Jan; 17(2):661-7. PubMed ID: 21207587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of Nanodimensional NiCoO
    Denis DK; Wang Z; Sun X; Zaman FU; Zhang J; Hou L; Li J; Yuan C
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32052-32061. PubMed ID: 31407882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyanthraquinone-Triazine-A Promising Anode Material for High-Energy Lithium-Ion Batteries.
    Kang H; Liu H; Li C; Sun L; Zhang C; Gao H; Yin J; Yang B; You Y; Jiang KC; Long H; Xin S
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37023-37030. PubMed ID: 30299921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dodecahedron-Shaped Porous Vanadium Oxide and Carbon Composite for High-Rate Lithium Ion Batteries.
    Zhang Y; Pan A; Wang Y; Wei W; Su Y; Hu J; Cao G; Liang S
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17303-11. PubMed ID: 27285481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hollow silica-copper-carbon anodes using copper metal-organic frameworks as skeletons.
    Sun Z; Xin F; Cao C; Zhao C; Shen C; Han WQ
    Nanoscale; 2015 Dec; 7(48):20426-34. PubMed ID: 26489524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries.
    Wang Q; Zou R; Xia W; Ma J; Qiu B; Mahmood A; Zhao R; Yang Y; Xia D; Xu Q
    Small; 2015 Jun; 11(21):2511-7. PubMed ID: 25688868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries.
    Chen L; Wang Z; He C; Zhao N; Shi C; Liu E; Li J
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9537-45. PubMed ID: 24016841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Yolk bishell Mn(x)Co(1-x)Fe2O4 hollow microspheres and their embedded form in carbon for highly reversible lithium storage.
    Zhang Z; Ji Y; Li J; Tan Q; Zhong Z; Su F
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6300-9. PubMed ID: 25738385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High Pseudocapacitance in FeOOH/rGO Composites with Superior Performance for High Rate Anode in Li-Ion Battery.
    Qi H; Cao L; Li J; Huang J; Xu Z; Cheng Y; Kong X; Yanagisawa K
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35253-35263. PubMed ID: 27977130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile Fabrication of Honeycomb-like Carbon Network-Encapsulated Fe/Fe
    Guo C; He J; Wu X; Huang Q; Wang Q; Zhao X; Wang Q
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):35994-36001. PubMed ID: 30265508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.