These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 32227061)

  • 1. Molecular simulations and understanding of antifouling zwitterionic polymer brushes.
    Liu Y; Zhang D; Ren B; Gong X; Xu L; Feng ZQ; Chang Y; He Y; Zheng J
    J Mater Chem B; 2020 May; 8(17):3814-3828. PubMed ID: 32227061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ.
    Leng C; Sun S; Zhang K; Jiang S; Chen Z
    Acta Biomater; 2016 Aug; 40():6-15. PubMed ID: 26923530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of Hydration Repulsion of Zwitterionic Polymer Brushes Resistant to Protein Adhesion through Molecular Simulations.
    Song X; Man J; Qiu Y; Wang J; Li R; Zhang Y; Cui G; Li J; Li J; Chen Y
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17145-17162. PubMed ID: 38534071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Investigation of Antifouling Property of Polyacrylamide Brushes.
    Liu Y; Zhang D; Ren B; Gong X; Liu A; Chang Y; He Y; Zheng J
    Langmuir; 2020 Mar; 36(11):2757-2766. PubMed ID: 32118448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity.
    Wei Y; Zhang J; Feng X; Liu D
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the Oxidative Stability of Antifouling Polymer Brushes.
    Du Y; Gao J; Chen T; Zhang C; Ji J; Xu ZK
    Langmuir; 2017 Jul; 33(29):7298-7304. PubMed ID: 28650665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Dynamics Study on Properties of Hydration Layers above Polymer Antifouling Membranes.
    Zhang H; Zheng J; Lin C; Yuan S
    Molecules; 2022 May; 27(10):. PubMed ID: 35630551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity.
    Li W; Liu Q; Liu L
    J Biomater Sci Polym Ed; 2014; 25(14-15):1730-42. PubMed ID: 25136859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro- and macroscopically structured zwitterionic polymers with ultralow fouling property.
    Zhang D; Ren B; Zhang Y; Liu Y; Chen H; Xiao S; Chang Y; Yang J; Zheng J
    J Colloid Interface Sci; 2020 Oct; 578():242-253. PubMed ID: 32531554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of non-freezing water in different nonfouling materials by differential scanning calorimetry.
    Ma G; Ji F; Lin W; Chen S
    J Biomater Sci Polym Ed; 2022 Jun; 33(8):1012-1024. PubMed ID: 35073220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-biofilm surfaces from mixed dopamine-modified polymer brushes: synergistic role of cationic and zwitterionic chains to resist staphyloccocus aureus.
    He Y; Wan X; Xiao K; Lin W; Li J; Li Z; Luo F; Tan H; Li J; Fu Q
    Biomater Sci; 2019 Dec; 7(12):5369-5382. PubMed ID: 31621697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers.
    Wu J; Zhao C; Hu R; Lin W; Wang Q; Zhao J; Bilinovich SM; Leeper TC; Li L; Cheung HM; Chen S; Zheng J
    Acta Biomater; 2014 Feb; 10(2):751-60. PubMed ID: 24120846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of AFM and Electrochemical QCM-D for Probing Zwitterionic Polymer Brushes in Water: Visualization of Ionic Strength and Surface Potential Effects.
    Lin CH; Luo SC
    Langmuir; 2021 Oct; 37(42):12476-12486. PubMed ID: 34648298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the structural dependence of carbon space lengths of poly(N-hydroxyalkyl acrylamide)-based brushes on antifouling performance.
    Yang J; Zhang M; Chen H; Chang Y; Chen Z; Zheng J
    Biomacromolecules; 2014 Aug; 15(8):2982-91. PubMed ID: 24964712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trimethylamine
    Li B; Jain P; Ma J; Smith JK; Yuan Z; Hung HC; He Y; Lin X; Wu K; Pfaendtner J; Jiang S
    Sci Adv; 2019 Jun; 5(6):eaaw9562. PubMed ID: 31214655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synergistic effect of hierarchical structure and alkyl chain length on the antifouling and bactericidal properties of cationic/zwitterionic block polymer brushes.
    He Y; Wan X; Lin W; Li J; Li Z; Luo F; Li J; Tan H; Fu Q
    Biomater Sci; 2020 Dec; 8(24):6890-6902. PubMed ID: 32672290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine-Learning-Aided Understanding of Protein Adsorption on Zwitterionic Polymer Brushes.
    Okuyama H; Sugawara Y; Yamaguchi T
    ACS Appl Mater Interfaces; 2024 May; 16(19):25236-25245. PubMed ID: 38700668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of Amphiphilic Zwitterionic Thin Poly(SBMA-
    Kim I; Kang SM
    Langmuir; 2024 Feb; 40(6):3213-3221. PubMed ID: 38314692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Antifouling Performance of Weakly Hydrophilic Polymer Brushes: A Molecular Dynamics Study.
    Yagasaki T; Matubayasi N
    Langmuir; 2024 Jul; 40(29):15046-15058. PubMed ID: 39004900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.