BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 32227413)

  • 1. Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment.
    Ovais M; Mukherjee S; Pramanik A; Das D; Mukherjee A; Raza A; Chen C
    Adv Mater; 2020 Jun; 32(22):e2000055. PubMed ID: 32227413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DePEGylation strategies to increase cancer nanomedicine efficacy.
    Kong L; Campbell F; Kros A
    Nanoscale Horiz; 2019 Mar; 4(2):378-387. PubMed ID: 32254090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoplatform-based cascade engineering for cancer therapy.
    Chen J; Zhu Y; Wu C; Shi J
    Chem Soc Rev; 2020 Dec; 49(24):9057-9094. PubMed ID: 33112326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor self-responsive upconversion nanomedicines for theranostic applications.
    Xu J; Gulzar A; Yang D; Gai S; He F; Yang P
    Nanoscale; 2019 Oct; 11(38):17535-17556. PubMed ID: 31553008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor Microenvironment Responsive Shape-Reversal Self-Targeting Virus-Inspired Nanodrug for Imaging-Guided Near-Infrared-II Photothermal Chemotherapy.
    Li Y; Lin J; Wang P; Luo Q; Lin H; Zhang Y; Hou Z; Liu J; Liu X
    ACS Nano; 2019 Nov; 13(11):12912-12928. PubMed ID: 31651142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor-Sensitive Biodegradable Nanoparticles of Molecularly Imprinted Polymer-Stabilized Fluorescent Zeolitic Imidazolate Framework-8 for Targeted Imaging and Drug Delivery.
    Qin YT; Feng YS; Ma YJ; He XW; Li WY; Zhang YK
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24585-24598. PubMed ID: 32390415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Infrared-Activated Upconversion Nanoprobes for Sensitive Endogenous Zn
    Hu P; Wang R; Zhou L; Chen L; Wu Q; Han MY; El-Toni AM; Zhao D; Zhang F
    Anal Chem; 2017 Mar; 89(6):3492-3500. PubMed ID: 28220697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomedicines Targeting the Tumor Microenvironment.
    Tong R; Langer R
    Cancer J; 2015; 21(4):314-21. PubMed ID: 26222084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Targeting of Cancers with Nanotherapeutics.
    Foster C; Watson A; Kaplinsky J; Kamaly N
    Methods Mol Biol; 2017; 1530():13-37. PubMed ID: 28150194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical imaging and pH-awakening therapy of deep tissue cancer based on specific upconversion nanophotosensitizers.
    Feng Y; Chen H; Wu Y; Que I; Tamburini F; Baldazzi F; Chang Y; Zhang H
    Biomaterials; 2020 Feb; 230():119637. PubMed ID: 31776018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment.
    Yang Y; Wu H; Liu B; Liu Z
    Adv Drug Deliv Rev; 2021 Dec; 179():114004. PubMed ID: 34662672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic nanothylakoids for efficient imaging-guided photodynamic therapy for cancer.
    Ouyang J; Wang L; Chen W; Zeng K; Han Y; Xu Y; Xu Q; Deng L; Liu YN
    Chem Commun (Camb); 2018 Apr; 54(28):3468-3471. PubMed ID: 29561035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimuli-responsive nanoparticles for targeting the tumor microenvironment.
    Du J; Lane LA; Nie S
    J Control Release; 2015 Dec; 219():205-214. PubMed ID: 26341694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sequentially responsive and structure-transformable nanoparticle with a comprehensively improved 'CAPIR cascade' for enhanced antitumor effect.
    Xu C; Sun Y; Yu Y; Hu M; Yang C; Zhang Z
    Nanoscale; 2019 Jan; 11(3):1177-1194. PubMed ID: 30601512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomedicine and Early Cancer Diagnosis: Molecular Imaging using Fluorescence Nanoparticles.
    Jin KT; Yao JY; Ying XJ; Lin Y; Chen YF
    Curr Top Med Chem; 2020; 20(30):2737-2761. PubMed ID: 32962614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-intrusive evaluation method for tumor-targeting characteristics of nanomedicines based on in vivo near-infrared fluorescence imaging.
    Liu H; Marquez RT; Wu X; Li K; Vadlamani S; Li S; Wang Y; Xu L; Wu D
    J Mater Chem B; 2019 Aug; 7(31):4751-4757. PubMed ID: 31389969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor Abnormality-Oriented Nanomedicine Design.
    Zhou Q; Xiang J; Qiu N; Wang Y; Piao Y; Shao S; Tang J; Zhou Z; Shen Y
    Chem Rev; 2023 Sep; 123(18):10920-10989. PubMed ID: 37713432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Monitoring of ATP-Responsive Drug Release Using Mesoporous-Silica-Coated Multicolor Upconversion Nanoparticles.
    Lai J; Shah BP; Zhang Y; Yang L; Lee KB
    ACS Nano; 2015 May; 9(5):5234-45. PubMed ID: 25859611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.