BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 32227413)

  • 21. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives.
    El-Sawy HS; Al-Abd AM; Ahmed TA; El-Say KM; Torchilin VP
    ACS Nano; 2018 Nov; 12(11):10636-10664. PubMed ID: 30335963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy.
    Gao M; Yu F; Lv C; Choo J; Chen L
    Chem Soc Rev; 2017 Apr; 46(8):2237-2271. PubMed ID: 28319221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox-responsive nano-carriers as tumor-targeted drug delivery systems.
    Raza A; Hayat U; Rasheed T; Bilal M; Iqbal HMN
    Eur J Med Chem; 2018 Sep; 157():705-715. PubMed ID: 30138802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular and nanoengineering approaches towards activatable cancer immunotherapy.
    Zhang C; Pu K
    Chem Soc Rev; 2020 Jul; 49(13):4234-4253. PubMed ID: 32452475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tumor microenvironment-activated NIR-II reagents for tumor imaging and therapy.
    Zhang X; An L; Tian Q; Lin J; Yang S
    J Mater Chem B; 2020 Jun; 8(22):4738-4747. PubMed ID: 32124909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics.
    Overchuk M; Zheng G
    Biomaterials; 2018 Feb; 156():217-237. PubMed ID: 29207323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment.
    Dai Y; Xu C; Sun X; Chen X
    Chem Soc Rev; 2017 Jun; 46(12):3830-3852. PubMed ID: 28516983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A smart tumor microenvironment responsive nanoplatform based on upconversion nanoparticles for efficient multimodal imaging guided therapy.
    Liu S; Li W; Gai S; Yang G; Zhong C; Dai Y; He F; Yang P; Suh YD
    Biomater Sci; 2019 Feb; 7(3):951-962. PubMed ID: 30534762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Factors Influencing the Delivery Efficiency of Cancer Nanomedicines.
    Ullah R; Wazir J; Khan FU; Diallo MT; Ihsan AU; Mikrani R; Aquib M; Zhou X
    AAPS PharmSciTech; 2020 May; 21(4):132. PubMed ID: 32409932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cancer nanomedicines targeting tumor extracellular pH.
    Tian L; Bae YH
    Colloids Surf B Biointerfaces; 2012 Nov; 99():116-26. PubMed ID: 22078927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox/NIR dual-responsive MoS
    Liu J; Li F; Zheng J; Li B; Zhang D; Jia L
    J Nanobiotechnology; 2019 Jul; 17(1):78. PubMed ID: 31269964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Smart Nanoplatforms Responding to the Tumor Microenvironment for Precise Drug Delivery in Cancer Therapy.
    Wang Y; Deng T; Liu X; Fang X; Mo Y; Xie N; Nie G; Zhang B; Fan X
    Int J Nanomedicine; 2024; 19():6253-6277. PubMed ID: 38911497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tumor Microenvironment-Responsive Theranostic Nanoplatform for in Situ Self-Boosting Combined Phototherapy through Intracellular Reassembly.
    Liu Y; Jing J; Jia F; Su S; Tian Y; Gao N; Yang C; Zhang R; Wang W; Zhang X
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):6966-6977. PubMed ID: 31965785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Responsive Role of Nanomedicine in the Tumor Microenvironment and Cancer Drug Resistance.
    Sa P; Sahoo SK; Dilnawaz F
    Curr Med Chem; 2023; 30(29):3335-3355. PubMed ID: 36154585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Programmed pH/reduction-responsive nanoparticles for efficient delivery of antitumor agents in vivo.
    Chen WL; Yang SD; Li F; Qu CX; Liu Y; Wang Y; Wang DD; Zhang XN
    Acta Biomater; 2018 Nov; 81():219-230. PubMed ID: 30267887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell Membrane Coated Semiconducting Polymer Nanoparticles for Enhanced Multimodal Cancer Phototheranostics.
    Li J; Zhen X; Lyu Y; Jiang Y; Huang J; Pu K
    ACS Nano; 2018 Aug; 12(8):8520-8530. PubMed ID: 30071159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.
    Bar-Zeev M; Livney YD; Assaraf YG
    Drug Resist Updat; 2017 Mar; 31():15-30. PubMed ID: 28867241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Smart Nanovesicle-Mediated Immunogenic Cell Death through Tumor Microenvironment Modulation for Effective Photodynamic Immunotherapy.
    Yang W; Zhang F; Deng H; Lin L; Wang S; Kang F; Yu G; Lau J; Tian R; Zhang M; Wang Z; He L; Ma Y; Niu G; Hu S; Chen X
    ACS Nano; 2020 Jan; 14(1):620-631. PubMed ID: 31877023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanomedicines for cancer therapy: current status, challenges and future prospects.
    Bor G; Mat Azmi ID; Yaghmur A
    Ther Deliv; 2019 Feb; 10(2):113-132. PubMed ID: 30678550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    Danhier F
    J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.