These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 32227416)
1. High-Valent Metal-Oxo Species at the Nodes of Metal-Triazolate Frameworks: The Effects of Ligand Exchange and Two-State Reactivity for C-H Bond Activation. Rosen AS; Notestein JM; Snurr RQ Angew Chem Int Ed Engl; 2020 Oct; 59(44):19494-19502. PubMed ID: 32227416 [TBL] [Abstract][Full Text] [Related]
3. Tuning the Redox Activity of Metal-Organic Frameworks for Enhanced, Selective O Rosen AS; Mian MR; Islamoglu T; Chen H; Farha OK; Notestein JM; Snurr RQ J Am Chem Soc; 2020 Mar; 142(9):4317-4328. PubMed ID: 32031371 [TBL] [Abstract][Full Text] [Related]
4. Molecular designs for controlling the local environments around metal ions. Cook SA; Borovik AS Acc Chem Res; 2015 Aug; 48(8):2407-14. PubMed ID: 26181849 [TBL] [Abstract][Full Text] [Related]
5. Density Functional Calculations of Electronic Structure, Charge Distribution, and Spin Coupling in Manganese-Oxo Dimer Complexes. Zhao XG; Richardson WH; Chen JL; Li J; Noodleman L; Tsai HL; Hendrickson DN Inorg Chem; 1997 Mar; 36(6):1198-1217. PubMed ID: 11669688 [TBL] [Abstract][Full Text] [Related]
6. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C-H and O-H Bond Activation. Ansari A; Ansari M; Singha A; Rajaraman G Chemistry; 2017 Jul; 23(42):10110-10125. PubMed ID: 28498623 [TBL] [Abstract][Full Text] [Related]
7. Zirconium-oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective ⋅OH Species for Enhanced Methane Hydroxylation. Fang G; Hu JN; Tian LC; Liang JX; Lin J; Li L; Zhu C; Wang X Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202205077. PubMed ID: 35768887 [TBL] [Abstract][Full Text] [Related]
8. Influence of the primary and secondary coordination spheres on nitric oxide adsorption and reactivity in cobalt(ii)-triazolate frameworks. Oktawiec J; Jiang HZH; Turkiewicz AB; Long JR Chem Sci; 2021 Nov; 12(43):14590-14598. PubMed ID: 34881011 [TBL] [Abstract][Full Text] [Related]
9. Probing the Origins of Puzzling Reactivity in Fe/Mn-Oxo/Hydroxo Species toward C-H Bonds: A DFT and Ab Initio Perspective. Sen A; Ansari A; Swain A; Pandey B; Rajaraman G Inorg Chem; 2023 Sep; 62(37):14931-14941. PubMed ID: 37650771 [TBL] [Abstract][Full Text] [Related]
10. Oxidation state dependence of the geometry, electronic structure, and magnetic coupling in mixed oxo- and carboxylato-bridged manganese dimers. Delfs CD; Stranger R Inorg Chem; 2001 Jun; 40(13):3061-76. PubMed ID: 11399174 [TBL] [Abstract][Full Text] [Related]
11. Electronic structure and reactivity of Fe(iv)oxo species in metal-organic frameworks. Saiz F; Bernasconi L Phys Chem Chem Phys; 2019 Feb; 21(9):4965-4974. PubMed ID: 30758369 [TBL] [Abstract][Full Text] [Related]
12. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction. Sharma PK; De Visser SP; Ogliaro F; Shaik S J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559 [TBL] [Abstract][Full Text] [Related]
13. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions. Rice DB; Massie AA; Jackson TA Acc Chem Res; 2017 Nov; 50(11):2706-2717. PubMed ID: 29064667 [TBL] [Abstract][Full Text] [Related]
14. Two-State Reactivity in Low-Valent Iron-Mediated C-H Activation and the Implications for Other First-Row Transition Metals. Sun Y; Tang H; Chen K; Hu L; Yao J; Shaik S; Chen H J Am Chem Soc; 2016 Mar; 138(11):3715-30. PubMed ID: 26907535 [TBL] [Abstract][Full Text] [Related]
15. Exploring the Tunability of Trimetallic MOF Nodes for Partial Oxidation of Methane to Methanol. Barona M; Snurr RQ ACS Appl Mater Interfaces; 2020 Jun; 12(25):28217-28231. PubMed ID: 32427460 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of Benzene Hydroxylation on Tri-Iron Oxo-Centered Cluster-Based Metal-Organic Frameworks. Vitillo JG; Choudhary M; Simons MC; Gagliardi L; Bhan A J Phys Chem C Nanomater Interfaces; 2023 Dec; 127(48):23246-23257. PubMed ID: 38090139 [TBL] [Abstract][Full Text] [Related]
17. Comparative insight into electronic properties and reactivities toward C-H bond activation by iron(IV)-nitrido, iron(IV)-oxo, and iron(IV)-sulfido complexes: a theoretical investigation. Tang H; Guan J; Liu H; Huang X Inorg Chem; 2013 Mar; 52(5):2684-96. PubMed ID: 23425218 [TBL] [Abstract][Full Text] [Related]
18. Ethane C-H bond activation on the Fe(iv)-oxo species in a Zn-based cluster of metal-organic frameworks: a density functional theory study. Impeng S; Siwaipram S; Bureekaew S; Probst M Phys Chem Chem Phys; 2017 Feb; 19(5):3782-3791. PubMed ID: 28102374 [TBL] [Abstract][Full Text] [Related]
19. O2 activation in a dinuclear Fe(II)/EDTA complex: spin surface crossing as a route to highly reactive Fe(IV)oxo species. Belanzoni P; Bernasconi L; Baerends EJ J Phys Chem A; 2009 Oct; 113(43):11926-37. PubMed ID: 19848430 [TBL] [Abstract][Full Text] [Related]
20. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules. Usharani D; Janardanan D; Li C; Shaik S Acc Chem Res; 2013 Feb; 46(2):471-82. PubMed ID: 23210564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]