BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 32227454)

  • 21. Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template.
    Helmig S; Rotaru A; Arian D; Kovbasyuk L; Arnbjerg J; Ogilby PR; Kjems J; Mokhir A; Besenbacher F; Gothelf KV
    ACS Nano; 2010 Dec; 4(12):7475-80. PubMed ID: 21090671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-Pot Synthesis of Defined-Length ssDNA for Multiscaffold DNA Origami.
    Noteborn WEM; Abendstein L; Sharp TH
    Bioconjug Chem; 2021 Jan; 32(1):94-98. PubMed ID: 33307668
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components.
    Ong LL; Hanikel N; Yaghi OK; Grun C; Strauss MT; Bron P; Lai-Kee-Him J; Schueder F; Wang B; Wang P; Kishi JY; Myhrvold C; Zhu A; Jungmann R; Bellot G; Ke Y; Yin P
    Nature; 2017 Dec; 552(7683):72-77. PubMed ID: 29219968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration.
    Chen H; Weng TW; Riccitelli MM; Cui Y; Irudayaraj J; Choi JH
    J Am Chem Soc; 2014 May; 136(19):6995-7005. PubMed ID: 24749534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multilayer DNA Origami with Terminal Interfaces That Are Flat and Wide-Area.
    Kilwing L; Lill P; Nathwani B; Guerra R; Benson E; Liedl T; Shih WM
    ACS Nano; 2024 Jan; 18(1):885-893. PubMed ID: 38109901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-self-assembly of multiple DNA origami nanostructures in a single pot.
    Johnson JA; Kolliopoulos V; Castro CE
    Chem Commun (Camb); 2021 May; 57(39):4795-4798. PubMed ID: 33982710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures.
    Suzuki Y; Endo M; Sugiyama H
    Nat Commun; 2015 Aug; 6():8052. PubMed ID: 26310995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic and Reversible Decoration of DNA-Based Scaffolds.
    Farag N; Đorđević M; Del Grosso E; Ricci F
    Adv Mater; 2023 May; 35(18):e2211274. PubMed ID: 36739507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design Features to Accelerate the Higher-Order Assembly of DNA Origami on Membranes.
    Qutbuddin Y; Krohn JH; Brüggenthies GA; Stein J; Gavrilovic S; Stehr F; Schwille P
    J Phys Chem B; 2021 Dec; 125(48):13181-13191. PubMed ID: 34818013
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complex DNA nanostructures from oligonucleotide ensembles.
    Mathur D; Henderson ER
    ACS Synth Biol; 2013 Apr; 2(4):180-5. PubMed ID: 23656476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isothermal hybridization kinetics of DNA assembly of two-dimensional DNA origami.
    Song J; Zhang Z; Zhang S; Liu L; Li Q; Xie E; Gothelf KV; Besenbacher F; Dong M
    Small; 2013 Sep; 9(17):2954-9. PubMed ID: 23436715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA Origami: Scaffolds for Creating Higher Order Structures.
    Hong F; Zhang F; Liu Y; Yan H
    Chem Rev; 2017 Oct; 117(20):12584-12640. PubMed ID: 28605177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami.
    Yao G; Li J; Chao J; Pei H; Liu H; Zhao Y; Shi J; Huang Q; Wang L; Huang W; Fan C
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):2966-9. PubMed ID: 25612825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Guiding the folding pathway of DNA origami.
    Dunn KE; Dannenberg F; Ouldridge TE; Kwiatkowska M; Turberfield AJ; Bath J
    Nature; 2015 Sep; 525(7567):82-6. PubMed ID: 26287459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expanding DNA Origami Design Freedom with De Novo Synthesized Scaffolds.
    Wu H; Zhang T; Qin Y; Xia X; Bai T; Gu H; Wei B
    J Am Chem Soc; 2024 Jun; 146(23):16076-16084. PubMed ID: 38803270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural stability of DNA origami nanostructures in the presence of chaotropic agents.
    Ramakrishnan S; Krainer G; Grundmeier G; Schlierf M; Keller A
    Nanoscale; 2016 May; 8(19):10398-405. PubMed ID: 27142120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scaling Up DNA Origami Lattice Assembly.
    Xin Y; Shen B; Kostiainen MA; Grundmeier G; Castro M; Linko V; Keller A
    Chemistry; 2021 Jun; 27(33):8564-8571. PubMed ID: 33780583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aptamer-Integrated Scaffolds for Biologically Functional DNA Origami Structures.
    Chen X; Jia B; Lu Z; Liao L; Yu H; Li Z
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39711-39718. PubMed ID: 34402304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.
    Agarwal NP; Matthies M; Joffroy B; Schmidt TL
    ACS Nano; 2018 Mar; 12(3):2546-2553. PubMed ID: 29451771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.