These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 32227454)

  • 41. Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard.
    Wickham SFJ; Auer A; Min J; Ponnuswamy N; Woehrstein JB; Schueder F; Strauss MT; Schnitzbauer J; Nathwani B; Zhao Z; Perrault SD; Hahn J; Lee S; Bastings MM; Helmig SW; Kodal AL; Yin P; Jungmann R; Shih WM
    Nat Commun; 2020 Nov; 11(1):5768. PubMed ID: 33188187
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regular Nanoscale Protein Patterns via Directed Adsorption through Self-Assembled DNA Origami Masks.
    Ramakrishnan S; Subramaniam S; Stewart AF; Grundmeier G; Keller A
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31239-31247. PubMed ID: 27779405
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mapping the thermal behavior of DNA origami nanostructures.
    Wei X; Nangreave J; Jiang S; Yan H; Liu Y
    J Am Chem Soc; 2013 Apr; 135(16):6165-76. PubMed ID: 23537246
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Directed Protein Adsorption Through DNA Origami Masks.
    Ramakrishnan S; Grundmeier G; Keller A
    Methods Mol Biol; 2018; 1811():253-262. PubMed ID: 29926458
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multi-micron crisscross structures grown from DNA-origami slats.
    Wintersinger CM; Minev D; Ershova A; Sasaki HM; Gowri G; Berengut JF; Corea-Dilbert FE; Yin P; Shih WM
    Nat Nanotechnol; 2023 Mar; 18(3):281-289. PubMed ID: 36543881
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Full Site-Specific Addressability in DNA Origami-Templated Silica Nanostructures.
    Wassermann LM; Scheckenbach M; Baptist AV; Glembockyte V; Heuer-Jungemann A
    Adv Mater; 2023 Jun; 35(23):e2212024. PubMed ID: 36932052
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancing the stability of DNA origami nanostructures: staple strand redesign versus enzymatic ligation.
    Ramakrishnan S; Schärfen L; Hunold K; Fricke S; Grundmeier G; Schlierf M; Keller A; Krainer G
    Nanoscale; 2019 Sep; 11(35):16270-16276. PubMed ID: 31455950
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modelling DNA origami self-assembly at the domain level.
    Dannenberg F; Dunn KE; Bath J; Kwiatkowska M; Turberfield AJ; Ouldridge TE
    J Chem Phys; 2015 Oct; 143(16):165102. PubMed ID: 26520554
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biotechnological mass production of DNA origami.
    Praetorius F; Kick B; Behler KL; Honemann MN; Weuster-Botz D; Dietz H
    Nature; 2017 Dec; 552(7683):84-87. PubMed ID: 29219963
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamic DNA Origami Devices: from Strand-Displacement Reactions to External-Stimuli Responsive Systems.
    Ijäs H; Nummelin S; Shen B; Kostiainen MA; Linko V
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30037005
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of Design Choices on the Stiffness of Wireframe DNA Origami Structures.
    Benson E; Mohammed A; Rayneau-Kirkhope D; Gådin A; Orponen P; Högberg B
    ACS Nano; 2018 Sep; 12(9):9291-9299. PubMed ID: 30188123
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DNA origami with double-stranded DNA as a unified scaffold.
    Yang Y; Han D; Nangreave J; Liu Y; Yan H
    ACS Nano; 2012 Sep; 6(9):8209-15. PubMed ID: 22830653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Strategies for Constructing and Operating DNA Origami Linear Actuators.
    Benson E; Carrascosa Marzo R; Bath J; Turberfield AJ
    Small; 2021 May; 17(20):e2007704. PubMed ID: 33942502
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Autonomously designed free-form 2D DNA origami.
    Jun H; Zhang F; Shepherd T; Ratanalert S; Qi X; Yan H; Bathe M
    Sci Adv; 2019 Jan; 5(1):eaav0655. PubMed ID: 30613779
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorous-Directed Assembly of DNA Origami Nanostructures.
    Zou J; Stammers AC; Taladriz-Sender A; Withers JM; Christie I; Santana Vega M; Aekbote BL; Peveler WJ; Rusling DA; Burley GA; Clark AW
    ACS Nano; 2023 Jan; 17(1):752-759. PubMed ID: 36537902
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Artificial Smooth Muscle Model Composed of Hierarchically Ordered Microtubule Asters Mediated by DNA Origami Nanostructures.
    Matsuda K; Kabir AMR; Akamatsu N; Saito A; Ishikawa S; Matsuyama T; Ditzer O; Islam MS; Ohya Y; Sada K; Konagaya A; Kuzuya A; Kakugo A
    Nano Lett; 2019 Jun; 19(6):3933-3938. PubMed ID: 31037942
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Construction of a novel phagemid to produce custom DNA origami scaffolds.
    Nafisi PM; Aksel T; Douglas SM
    Synth Biol (Oxf); 2018 Jan; 3(1):. PubMed ID: 30984875
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts.
    Chen H; Zhang H; Pan J; Cha TG; Li S; Andréasson J; Choi JH
    ACS Nano; 2016 May; 10(5):4989-96. PubMed ID: 27057775
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alignment of Gold Nanoparticle-Decorated DNA Origami Nanotubes: Substrate Prepatterning versus Molecular Combing.
    Teschome B; Facsko S; Gothelf KV; Keller A
    Langmuir; 2015 Nov; 31(46):12823-9. PubMed ID: 26522180
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNA origami: the art of folding DNA.
    Saccà B; Niemeyer CM
    Angew Chem Int Ed Engl; 2012 Jan; 51(1):58-66. PubMed ID: 22162047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.