These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32227512)

  • 21. Hexafluoroquinoxaline Based Polymer for Nonfullerene Solar Cells Reaching 9.4% Efficiency.
    Xu S; Feng L; Yuan J; Zhang ZG; Li Y; Peng H; Zou Y
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18816-18825. PubMed ID: 28530392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 18.6% Efficiency All-Polymer Solar Cells Enabled by a Wide Bandgap Polymer Donor Based on Benzo[1,2-d:4,5-d']bisthiazole.
    Wu P; Duan Y; Li Y; Xu X; Li R; Yu L; Peng Q
    Adv Mater; 2024 Jan; 36(3):e2306990. PubMed ID: 37766648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chlorinated Wide-Bandgap Donor Polymer Enabling Annealing Free Nonfullerene Solar Cells with the Efficiency of 11.5.
    Liu Z; Gao Y; Dong J; Yang M; Liu M; Zhang Y; Wen J; Ma H; Gao X; Chen W; Shao M
    J Phys Chem Lett; 2018 Dec; 9(24):6955-6962. PubMed ID: 30485106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly Efficient Nonfullerene Polymer Solar Cells Enabled by a Copper(I) Coordination Strategy Employing a 1,3,4-Oxadiazole-Containing Wide-Bandgap Copolymer Donor.
    Xu X; Li Z; Bi Z; Yu T; Ma W; Feng K; Li Y; Peng Q
    Adv Mater; 2018 Jul; 30(28):e1800737. PubMed ID: 29782681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of the Siloxane-Terminated Side Chain on Photovoltaic Performances of the Dithienylbenzodithiophene-Difluorobenzotriazole-Based Wide Band Gap Polymer Donor in Non-Fullerene Polymer Solar Cells.
    Jiang H; Pan F; Zhang L; Zhou X; Wang Z; Nian Y; Liu C; Tang W; Ma Q; Ni Z; Chen M; Ma W; Cao Y; Chen J
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29094-29104. PubMed ID: 31337209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High Efficiency Polymer Solar Cells with Efficient Hole Transfer at Zero Highest Occupied Molecular Orbital Offset between Methylated Polymer Donor and Brominated Acceptor.
    Sun C; Qin S; Wang R; Chen S; Pan F; Qiu B; Shang Z; Meng L; Zhang C; Xiao M; Yang C; Li Y
    J Am Chem Soc; 2020 Jan; 142(3):1465-1474. PubMed ID: 31904234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells.
    Li S; Ye L; Zhao W; Yan H; Yang B; Liu D; Li W; Ade H; Hou J
    J Am Chem Soc; 2018 Jun; 140(23):7159-7167. PubMed ID: 29737160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wide Band Gap and Highly Conjugated Copolymers Incorporating 2-(Triisopropylsilylethynyl)thiophene-Substituted Benzodithiophene for Efficient Non-Fullerene Organic Solar Cells.
    Wang L; Liu H; Huai Z; Yang S
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28828-28837. PubMed ID: 28792202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Halogenation in B ← N Embedded Polymer Acceptors on Performance of All-Polymer Solar Cells.
    Meng H; Li Y; Pang B; Li Y; Xiang Y; Guo L; Li X; Zhan C; Huang J
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2733-2742. PubMed ID: 31856566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymer Acceptors Containing B←N Units for Organic Photovoltaics.
    Zhao R; Liu J; Wang L
    Acc Chem Res; 2020 Aug; 53(8):1557-1567. PubMed ID: 32692535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Donor-acceptor-type copolymers based on a naphtho[1,2-c:5,6-c]bis(1,2,5-thiadiazole) scaffold for high-efficiency polymer solar cells.
    Liu LQ; Zhang GC; Liu P; Zhang J; Dong S; Wang M; Ma YG; Yip HL; Huang F
    Chem Asian J; 2014 Aug; 9(8):2104-12. PubMed ID: 24737596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Side Chain Engineering on Medium Bandgap Copolymers to Suppress Triplet Formation for High-Efficiency Polymer Solar Cells.
    Xue L; Yang Y; Xu J; Zhang C; Bin H; Zhang ZG; Qiu B; Li X; Sun C; Gao L; Yao J; Chen X; Yang Y; Xiao M; Li Y
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28859234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced performance of organic photovoltaic cells fabricated with a methyl thiophene-3-carboxylate-containing alternating conjugated copolymer.
    Cho MJ; Seo J; Kim KH; Choi DH; Prasad PN
    Macromol Rapid Commun; 2012 Jan; 33(2):146-51. PubMed ID: 22121017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Manipulating Polymer Donors Toward a High-Performance Polymer Acceptor Based On a Fused Perylenediimide Building Block With a Built-In Twisting Configuration.
    Yin Y; Zheng Z; Lu Y; Chen D; Liu M; Guo F; Gao S; Zhao L; Zhang Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29765-29772. PubMed ID: 31337214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wide Bandgap Polymer Donors Based on Succinimide-Substituted Thiophene for Nonfullerene Organic Solar Cells.
    Yuan Y; Flynn S; Li X; Liu H; Wang J; Li Y
    Macromol Rapid Commun; 2024 Jun; ():e2400275. PubMed ID: 38830087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual Imide-Functionalized Unit-Based Regioregular D-A
    Wang Y; Kim SW; Lee J; Matsumoto H; Kim BJ; Michinobu T
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22583-22594. PubMed ID: 31142111
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile Strategy for Third Component Optimization in Wide-Band-Gap π-Conjugated Polymer Donor-Based Efficient Ternary All-Polymer Solar Cells.
    Gokulnath T; Feng K; Park HY; Do Y; Park H; Gayathri RD; Reddy SS; Kim J; Guo X; Yoon J; Jin SH
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11211-11221. PubMed ID: 35225595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aggregation Tuning with Heavily Fluorinated Donor Polymer for Efficient Organic Solar Cells.
    Kang X; Li X; Liu H; Liang Z; Chen W; Zheng N; Qiao S; Yang R
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49849-49856. PubMed ID: 33103902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Broad Bandgap D-A Copolymer Based on Bithiazole Acceptor Unit for Application in High-Performance Polymer Solar Cells with Lower Fullerene Content.
    Wang K; Guo X; Guo B; Li W; Zhang M; Li Y
    Macromol Rapid Commun; 2016 Jul; 37(13):1066-73. PubMed ID: 27174683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wide-bandgap donor polymers based on a dicyanodivinyl indacenodithiophene unit for non-fullerene polymer solar cells.
    He B; Chen Y; Chen J; Chen S; Xiao M; Chen G; Dai C
    RSC Adv; 2021 Jun; 11(35):21397-21404. PubMed ID: 35478821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.