These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32227533)

  • 1. Evidence for Electron Transfer between Graphene and Non-Covalently Bound π-Systems.
    Brülls SM; Cantatore V; Wang Z; Tam PL; Malmberg P; Stubbe J; Sarkar B; Panas I; Mårtensson J; Eigler S
    Chemistry; 2020 May; 26(29):6694-6702. PubMed ID: 32227533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acrylates Polymerization on Covalent Plasma-Assisted Functionalized Graphene: A Route to Synthesize Hybrid Functional Materials.
    Muñoz R; León-Boigues L; López-Elvira E; Munuera C; Vázquez L; Mompeán F; Martín-Gago JÁ; Palacio I; García-Hernández M
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):46171-46180. PubMed ID: 37738025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the effects of metal nanostructuring and oxidation on the work function and charge transfer of metal/graphene hybrids.
    Giangregorio MM; Jiao W; Bianco GV; Capezzuto P; Brown AS; Bruno G; Losurdo M
    Nanoscale; 2015 Aug; 7(30):12868-77. PubMed ID: 26158222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of BP2T functionalized graphene
    Li H; Duan T; Sher O; Han Y; Papadakis R; Grigoriev A; Ahuja R; Leifer K
    RSC Adv; 2021 Nov; 11(57):35982-35987. PubMed ID: 35492755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fused Heterocyclic Molecule-Functionalized N-Doped Reduced Graphene Oxide by Non-Covalent Bonds for High-Performance Supercapacitors.
    Xu L; Zhang Y; Zhou W; Jiang F; Zhang H; Jiang Q; Jia Y; Wang R; Liang A; Xu J; Duan X
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45202-45213. PubMed ID: 32924424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of physical and electronic structures of bilayer graphene upon chemical functionalization.
    Wang QH; Shih CJ; Paulus GL; Strano MS
    J Am Chem Soc; 2013 Dec; 135(50):18866-75. PubMed ID: 24266808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding structure-properties relationships of porphyrin linked to graphene oxide through π-π-stacking or covalent amide bonds.
    Lewandowska-Andralojc A; Gacka E; Pedzinski T; Burdzinski G; Lindner A; O'Brien JM; Senge MO; Siklitskaya A; Kubas A; Marciniak B; Walkowiak-Kulikowska J
    Sci Rep; 2022 Aug; 12(1):13420. PubMed ID: 35927398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wet chemical functionalization of graphene.
    Hirsch A; Englert JM; Hauke F
    Acc Chem Res; 2013 Jan; 46(1):87-96. PubMed ID: 22946482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive Boron-Nitrogen-Codoped CVD Graphene-Derived NO
    Srivastava S; Pal P; Sharma DK; Kumar S; Senguttuvan TD; Gupta BK
    ACS Mater Au; 2022 May; 2(3):356-366. PubMed ID: 36855380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p-Doping of graphene in hybrid materials with 3,10-diazapicenium dications.
    Roth A; Schaub TA; Meinhardt U; Thiel D; Storch J; Církva V; Jakubík P; Guldi DM; Kivala M
    Chem Sci; 2017 May; 8(5):3494-3499. PubMed ID: 28507723
    [No Abstract]   [Full Text] [Related]  

  • 11. Physical adsorption and charge transfer of molecular Br2 on graphene.
    Chen Z; Darancet P; Wang L; Crowther AC; Gao Y; Dean CR; Taniguchi T; Watanabe K; Hone J; Marianetti CA; Brus LE
    ACS Nano; 2014 Mar; 8(3):2943-50. PubMed ID: 24528378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photo-Induced Doping in a Graphene Field-Effect Transistor with Inkjet-Printed Organic Semiconducting Molecules.
    Nekrasov N; Kireev D; Omerović N; Emelianov A; Bobrinetskiy I
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31835474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for Trans-Oligoene Chain Formation in Graphene Induced by Iodine.
    Grote F; Weintrub BI; Kreßler M; Cao Q; Halbig CE; Kusch P; Bolotin KI; Eigler S
    Small; 2024 Mar; ():e2311987. PubMed ID: 38506566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile graphene n-doping by wet chemical treatment for electronic applications.
    Bong JH; Sul O; Yoon A; Choi SY; Cho BJ
    Nanoscale; 2014 Aug; 6(15):8503-8. PubMed ID: 24946832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dramatic Enhancement of Optoelectronic Properties of Electrophoretically Deposited C
    Chugh S; Adhikari N; Lee JH; Berman D; Echegoyen L; Kaul AB
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24349-24359. PubMed ID: 31141336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doping effect in graphene-graphene oxide interlayer.
    Haidari MM; Kim H; Kim JH; Park M; Lee H; Choi JS
    Sci Rep; 2020 May; 10(1):8258. PubMed ID: 32427899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Doping in Graphene Monolayers by Trapping Organic Molecules at the Graphene-Substrate Interface.
    Srivastava PK; Yadav P; Rani V; Ghosh S
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5375-5381. PubMed ID: 28094503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems.
    Cho Y; Cho WJ; Youn IS; Lee G; Singh NJ; Kim KS
    Acc Chem Res; 2014 Nov; 47(11):3321-30. PubMed ID: 25338296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.
    Zheng C; Huang L; Zhang H; Sun Z; Zhang Z; Zhang GJ
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16953-9. PubMed ID: 26203889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent electron transfer chemistry of graphene with diazonium salts.
    Paulus GL; Wang QH; Strano MS
    Acc Chem Res; 2013 Jan; 46(1):160-70. PubMed ID: 22946516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.