These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32227853)

  • 1. Influence of Surface Potential on the Capacitive Performance of the TiO
    Tan W; Gao T; Wang Y
    Langmuir; 2020 Apr; 36(14):3836-3842. PubMed ID: 32227853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Electrochemical Stability of a Zwitterionic-Polymer-Functionalized Electrode for Capacitive Deionization.
    Jung Y; Yang Y; Kim T; Shin HS; Hong S; Cha S; Kwon S
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6207-6217. PubMed ID: 29384362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Performance of Free-Standing and Flexible Graphene and TiO
    Jiang L; Luo D; Zhang Q; Ma S; Wan G; Lu X; Ren Z
    Chemistry; 2019 Jun; 25(33):7903-7911. PubMed ID: 30974005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water.
    Feng C; Chen YA; Yu CP; Hou CH
    Chemosphere; 2018 Oct; 208():285-293. PubMed ID: 29883863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Polyoxometalate-Based Binder-Free Capacitive Deionization Electrode for Highly Efficient Sea Water Desalination.
    Liu H; Zhang J; Xu X; Wang Q
    Chemistry; 2020 Apr; 26(19):4403-4409. PubMed ID: 32017296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Important Factor Affecting the Supercapacitive Properties of Hydrogenated TiO
    Li W; Zhang W; Li T; Wei A; Liu Y; Wang H
    Nanoscale Res Lett; 2019 Jul; 14(1):229. PubMed ID: 31292810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of activated carbon characteristics on the electrosorption capacity of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method.
    Liu PI; Chung LC; Ho CH; Shao H; Liang TM; Horng RY; Chang MC; Ma CC
    J Colloid Interface Sci; 2015 May; 446():352-8. PubMed ID: 25576198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors.
    Torabi S; Cherry M; Duijnstee EA; Le Corre VM; Qiu L; Hummelen JC; Palasantzas G; Koster LJA
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):27290-27297. PubMed ID: 28745040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effect of nitrogen, sulfur-codoping on porous carbon nanosheets as highly efficient electrodes for capacitive deionization.
    Min X; Hu X; Li X; Wang H; Yang W
    J Colloid Interface Sci; 2019 Aug; 550():147-158. PubMed ID: 31063873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes.
    Lee S; Eom W; Park H; Han TH
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25332-25338. PubMed ID: 28696654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Ru-Pt alloy electrode to suppress leakage currents of dynamic random-access memory capacitors.
    Pyeon JJ; Cho CJ; Jeong DS; Kim JS; Kang CY; Kim SK
    Nanotechnology; 2018 Nov; 29(45):455202. PubMed ID: 30160244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved lithium storage properties of electrospun TiO2 with tunable morphology: from porous anatase to necklace rutile.
    Yang Y; Wang H; Zhou Q; Kong M; Ye H; Yang G
    Nanoscale; 2013 Nov; 5(21):10267-74. PubMed ID: 24056926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration.
    Yang S; Choi J; Yeo JG; Jeon SI; Park HR; Kim DK
    Environ Sci Technol; 2016 Jun; 50(11):5892-9. PubMed ID: 27162028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures.
    Cao F; Xiong J; Wu F; Liu Q; Shi Z; Yu Y; Wang X; Li L
    ACS Appl Mater Interfaces; 2016 May; 8(19):12239-45. PubMed ID: 27136708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced capacitance performance of Al₂O₃-TiO₂ composite thin film via sol-gel using double chelators.
    Du X; Men K; Xu Y; Li B; Yang Z; Liu Z; Li L; Li L; Feng T; Wasif ur Rehman ; Ullah I; Mao S
    J Colloid Interface Sci; 2015 Apr; 443():170-6. PubMed ID: 25554973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/ rutile phases.
    Jiang D; Zhang S; Zhao H
    Environ Sci Technol; 2007 Jan; 41(1):303-8. PubMed ID: 17265963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grafting the Charged Functional Groups on Carbon Nanotubes for Improving the Efficiency and Stability of Capacitive Deionization Process.
    Ma D; Cai Y; Wang Y; Xu S; Wang J; Khan MU
    ACS Appl Mater Interfaces; 2019 May; 11(19):17617-17628. PubMed ID: 31013424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced capacitance of composite TiO2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy.
    Siuzdak K; Bogdanowicz R; Sawczak M; Sobaszek M
    Nanoscale; 2015 Jan; 7(2):551-8. PubMed ID: 25413987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.