These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 32227880)
1. Improving Protein-Ligand Docking Results with High-Throughput Molecular Dynamics Simulations. Guterres H; Im W J Chem Inf Model; 2020 Apr; 60(4):2189-2198. PubMed ID: 32227880 [TBL] [Abstract][Full Text] [Related]
2. Ligity: A Non-Superpositional, Knowledge-Based Approach to Virtual Screening. Ebejer JP; Finn PW; Wong WK; Deane CM; Morris GM J Chem Inf Model; 2019 Jun; 59(6):2600-2616. PubMed ID: 31117509 [TBL] [Abstract][Full Text] [Related]
3. Flexible CDOCKER: Hybrid Searching Algorithm and Scoring Function with Side Chain Conformational Entropy. Wu Y; Brooks CL J Chem Inf Model; 2021 Nov; 61(11):5535-5549. PubMed ID: 34704754 [TBL] [Abstract][Full Text] [Related]
4. Ligand-Binding-Site Refinement to Generate Reliable Holo Protein Structure Conformations from Apo Structures. Guterres H; Park SJ; Jiang W; Im W J Chem Inf Model; 2021 Jan; 61(1):535-546. PubMed ID: 33337877 [TBL] [Abstract][Full Text] [Related]
5. Benchmarked molecular docking integrated molecular dynamics stability analysis for prediction of SARS-CoV-2 papain-like protease inhibition by olive secoiridoids. Thangavel N; Albratty M J King Saud Univ Sci; 2023 Jan; 35(1):102402. PubMed ID: 36338939 [TBL] [Abstract][Full Text] [Related]
6. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment. Zhang X; Wong SE; Lightstone FC J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939 [TBL] [Abstract][Full Text] [Related]
7. Exploring the Stability of Ligand Binding Modes to Proteins by Molecular Dynamics Simulations: A Cross-docking Study. Liu K; Kokubo H J Chem Inf Model; 2017 Oct; 57(10):2514-2522. PubMed ID: 28902511 [TBL] [Abstract][Full Text] [Related]
8. PLHINT: A knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions. Kumar SP J Mol Graph Model; 2018 Jan; 79():194-212. PubMed ID: 29241118 [TBL] [Abstract][Full Text] [Related]
9. Molecular dynamics to enhance structure-based virtual screening on cathepsin B. Ogrizek M; Turk S; Lešnik S; Sosič I; Hodošček M; Mirković B; Kos J; Janežič D; Gobec S; Konc J J Comput Aided Mol Des; 2015 Aug; 29(8):707-12. PubMed ID: 25947277 [TBL] [Abstract][Full Text] [Related]
10. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking. Uehara S; Tanaka S Molecules; 2016 Nov; 21(11):. PubMed ID: 27886114 [TBL] [Abstract][Full Text] [Related]
11. Boosting Docking-Based Virtual Screening with Deep Learning. Pereira JC; Caffarena ER; Dos Santos CN J Chem Inf Model; 2016 Dec; 56(12):2495-2506. PubMed ID: 28024405 [TBL] [Abstract][Full Text] [Related]
12. Cosolvent-Based Protein Pharmacophore for Ligand Enrichment in Virtual Screening. Arcon JP; Defelipe LA; Lopez ED; Burastero O; Modenutti CP; Barril X; Marti MA; Turjanski AG J Chem Inf Model; 2019 Aug; 59(8):3572-3583. PubMed ID: 31373819 [TBL] [Abstract][Full Text] [Related]
13. A Molecular Dynamics-Shared Pharmacophore Approach to Boost Early-Enrichment Virtual Screening: A Case Study on Peroxisome Proliferator-Activated Receptor α. Perricone U; Wieder M; Seidel T; Langer T; Padova A; Almerico AM; Tutone M ChemMedChem; 2017 Aug; 12(16):1399-1407. PubMed ID: 28135036 [TBL] [Abstract][Full Text] [Related]
14. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. Liu K; Watanabe E; Kokubo H J Comput Aided Mol Des; 2017 Feb; 31(2):201-211. PubMed ID: 28074360 [TBL] [Abstract][Full Text] [Related]
15. Computational insight into the phthalocyanine-DNA binding via docking and molecular dynamics simulations. Ozalp L; Sağ Erdem S; Yüce-Dursun B; Mutlu Ö; Özbil M Comput Biol Chem; 2018 Dec; 77():87-96. PubMed ID: 30245350 [TBL] [Abstract][Full Text] [Related]
16. CHARMM-GUI Guterres H; Park SJ; Cao Y; Im W J Chem Inf Model; 2021 Nov; 61(11):5336-5342. PubMed ID: 34757752 [TBL] [Abstract][Full Text] [Related]
17. Beware of machine learning-based scoring functions-on the danger of developing black boxes. Gabel J; Desaphy J; Rognan D J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678 [TBL] [Abstract][Full Text] [Related]
18. Local Interaction Density (LID), a Fast and Efficient Tool to Prioritize Docking Poses. Jacquemard C; Tran-Nguyen VK; Drwal MN; Rognan D; Kellenberger E Molecules; 2019 Jul; 24(14):. PubMed ID: 31323745 [TBL] [Abstract][Full Text] [Related]
19. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015. Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018 [TBL] [Abstract][Full Text] [Related]
20. Ligand-based virtual screening approach using a new scoring function. Hamza A; Wei NN; Zhan CG J Chem Inf Model; 2012 Apr; 52(4):963-74. PubMed ID: 22486340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]