These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Key mechanistic features of enantioselective C-H bond activation reactions catalyzed by [(chiral mono-N-protected amino acid)-Pd(II)] complexes. Musaev DG; Kaledin A; Shi BF; Yu JQ J Am Chem Soc; 2012 Jan; 134(3):1690-8. PubMed ID: 22148424 [TBL] [Abstract][Full Text] [Related]
5. Syntheses and Transformations of α-Amino Acids via Palladium-Catalyzed Auxiliary-Directed sp(3) C-H Functionalization. He G; Wang B; Nack WA; Chen G Acc Chem Res; 2016 Apr; 49(4):635-45. PubMed ID: 27015079 [TBL] [Abstract][Full Text] [Related]
6. Catalytic Behavior of Mono-N-Protected Amino-Acid Ligands in Ligand-Accelerated C-H Activation by Palladium(II). Salazar CA; Gair JJ; Flesch KN; Guzei IA; Lewis JC; Stahl SS Angew Chem Int Ed Engl; 2020 Jun; 59(27):10873-10877. PubMed ID: 32196853 [TBL] [Abstract][Full Text] [Related]
7. Direct functionalization of M-C (M = Pt(II), Pd(II)) bonds using environmentally benign oxidants, O2 and H2O2. Vedernikov AN Acc Chem Res; 2012 Jun; 45(6):803-13. PubMed ID: 22087633 [TBL] [Abstract][Full Text] [Related]
9. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions. Engle KM; Mei TS; Wasa M; Yu JQ Acc Chem Res; 2012 Jun; 45(6):788-802. PubMed ID: 22166158 [TBL] [Abstract][Full Text] [Related]
10. Versatile reactivity of Pd-catalysts: mechanistic features of the mono-N-protected amino acid ligand and cesium-halide base in Pd-catalyzed C-H bond functionalization. Musaev DG; Figg TM; Kaledin AL Chem Soc Rev; 2014 Jul; 43(14):5009-31. PubMed ID: 24626313 [TBL] [Abstract][Full Text] [Related]
13. Palladium-Catalyzed Asymmetric Allylic C-H Functionalization: Mechanism, Stereo- and Regioselectivities, and Synthetic Applications. Wang PS; Gong LZ Acc Chem Res; 2020 Dec; 53(12):2841-2854. PubMed ID: 33006283 [TBL] [Abstract][Full Text] [Related]
14. Mechanism and Selectivity Control in Ni- and Pd-Catalyzed Cross-Couplings Involving Carbon-Oxygen Bond Activation. Zhang SQ; Hong X Acc Chem Res; 2021 May; 54(9):2158-2171. PubMed ID: 33826300 [TBL] [Abstract][Full Text] [Related]
15. Direct functionalization processes: a journey from palladium to copper to iron to nickel to metal-free coupling reactions. Mousseau JJ; Charette AB Acc Chem Res; 2013 Feb; 46(2):412-24. PubMed ID: 23098328 [TBL] [Abstract][Full Text] [Related]
16. Imparting catalyst control upon classical palladium-catalyzed alkenyl C-H bond functionalization reactions. Sigman MS; Werner EW Acc Chem Res; 2012 Jun; 45(6):874-84. PubMed ID: 22111756 [TBL] [Abstract][Full Text] [Related]
17. Electronic and Steric Tuning of a Prototypical Piano Stool Complex: Rh(III) Catalysis for C-H Functionalization. Piou T; Rovis T Acc Chem Res; 2018 Jan; 51(1):170-180. PubMed ID: 29272106 [TBL] [Abstract][Full Text] [Related]
18. Chiral Pd-Catalyzed Enantioselective Syntheses of Various N-C Axially Chiral Compounds and Their Synthetic Applications. Kitagawa O Acc Chem Res; 2021 Feb; 54(3):719-730. PubMed ID: 33481580 [TBL] [Abstract][Full Text] [Related]
19. Controlling Reactivity and Selectivity in the Nondirected C-H Activation of Arenes with Palladium. Kaltenberger S; van Gemmeren M Acc Chem Res; 2023 Sep; 56(18):2459-2472. PubMed ID: 37639549 [TBL] [Abstract][Full Text] [Related]
20. Chiral Ligands Based on Binaphthyl Scaffolds for Pd-Catalyzed Enantioselective C-H Activation/Cycloaddition Reactions. González JM; Vidal X; Ortuño MA; Mascareñas JL; Gulías M J Am Chem Soc; 2022 Nov; 144(47):21437-21442. PubMed ID: 36378026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]