These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 32227925)
1. Relativistic Effects on the Properties of Lr: A Periodic DFT Study of the Adsorption of Lr on Surfaces of Ta in Comparison with Lu and Tl. Pershina V Inorg Chem; 2020 Apr; 59(8):5490-5496. PubMed ID: 32227925 [TBL] [Abstract][Full Text] [Related]
2. Reactivity of Group 13 Elements Tl and Element 113, Nh, and of Their Hydroxides with Respect to Various Quartz Surfaces from Periodic Relativistic DFT Calculations. Iliaš M; Pershina V Inorg Chem; 2022 Oct; 61(40):15910-15920. PubMed ID: 36149319 [TBL] [Abstract][Full Text] [Related]
3. Properties and Reactivity of Hydroxides of Group 13 Elements In, Tl, and Nh from Molecular and Periodic DFT Calculations. Pershina V; Iliaš M Inorg Chem; 2019 Aug; 58(15):9866-9873. PubMed ID: 31287670 [TBL] [Abstract][Full Text] [Related]
4. Reactivity of the Superheavy Element 115, Mc, and Its Lighter Homologue, Bi, with Respect to Gold and Hydroxylated Quartz Surfaces from Periodic Relativistic DFT Calculations: A Comparison with Element 113, Nh. Pershina V; Iliaš M; Yakushev A Inorg Chem; 2021 Jul; 60(13):9796-9804. PubMed ID: 34142795 [TBL] [Abstract][Full Text] [Related]
5. Reactivity of Superheavy Elements Cn, Nh, and Fl and Their Lighter Homologues Hg, Tl, and Pb, Respectively, with a Gold Surface from Periodic DFT Calculations. Pershina V Inorg Chem; 2018 Apr; 57(7):3948-3955. PubMed ID: 29565120 [TBL] [Abstract][Full Text] [Related]
6. Theoretical predictions of trends in spectroscopic properties of gold containing dimers of the 6p and 7p elements and their adsorption on gold. Pershina V; Borschevsky A; Anton J; Jacob T J Chem Phys; 2010 Sep; 133(10):104304. PubMed ID: 20849169 [TBL] [Abstract][Full Text] [Related]
7. Ionization potentials of the superheavy element livermorium (Z = 116). Liu J; Shen X; Wang K; Sang C J Chem Phys; 2020 May; 152(20):204303. PubMed ID: 32486696 [TBL] [Abstract][Full Text] [Related]
8. A theoretical study of the adsorption behavior of superheavy 7p-elements and their compounds on a surface of gold in comparison with their lighter homologs. Ryzhkov A; Pershina V; Iliaš M; Shabaev V Phys Chem Chem Phys; 2023 Jun; 25(22):15362-15370. PubMed ID: 37227053 [TBL] [Abstract][Full Text] [Related]
9. Reactivity of Ts and At oxides and oxyhydrides with a gold surface from periodic DFT calculations. Ryzhkov A; Pershina V; Iliaš M; Shabaev V Phys Chem Chem Phys; 2024 Mar; 26(13):9975-9983. PubMed ID: 38477329 [TBL] [Abstract][Full Text] [Related]
10. Atomic properties of element 113 and its adsorption on inert surfaces from ab initio Dirac-Coulomb calculations. Pershina V; Borschevsky A; Eliav E; Kaldor U J Phys Chem A; 2008 Dec; 112(51):13712-6. PubMed ID: 19049424 [TBL] [Abstract][Full Text] [Related]
13. Resonance transition energies and oscillator strengths in lutetium and lawrencium. Zou Y; Fischer CF Phys Rev Lett; 2002 May; 88(18):183001. PubMed ID: 12005680 [TBL] [Abstract][Full Text] [Related]
14. Theoretical predictions of properties of group-2 elements including element 120 and their adsorption on noble metal surfaces. Pershina V; Borschevsky A; Anton J J Chem Phys; 2012 Apr; 136(13):134317. PubMed ID: 22482562 [TBL] [Abstract][Full Text] [Related]
15. Intermetallic compounds of the heaviest elements and their homologs: the electronic structure and bonding of MM', where M=Ge, Sn, Pb, and element 114, and M'=Ni, Pd, Pt, Cu, Ag, Au, Sn, Pb, and element 114. Pershina V; Anton J; Fricke B J Chem Phys; 2007 Oct; 127(13):134310. PubMed ID: 17919027 [TBL] [Abstract][Full Text] [Related]
16. Reactivity of superheavy elements Cn and Fl and of their oxides in comparison with homologous species of Hg and Pb, respectively, towards gold and hydroxylated quartz surfaces. Pershina V; Iliaš M Dalton Trans; 2022 May; 51(18):7321-7332. PubMed ID: 35482331 [TBL] [Abstract][Full Text] [Related]
17. BaHg2Tl2. An unusual polar intermetallic phase with strong differentiation between the neighboring elements mercury and thallium. Dai JC; Gupta S; Gourdon O; Kim HJ; Corbett JD J Am Chem Soc; 2009 Jun; 131(24):8677-82. PubMed ID: 19459627 [TBL] [Abstract][Full Text] [Related]
18. Is the chemistry of lawrencium peculiar? Xu WH; Pyykkö P Phys Chem Chem Phys; 2016 Jul; 18(26):17351-5. PubMed ID: 27314425 [TBL] [Abstract][Full Text] [Related]
19. Refined theoretical values of field and mass isotope shifts in thallium to extract charge radii of Tl isotopes. Penyazkov G; Prosnyak SD; Barzakh AE; Skripnikov LV J Chem Phys; 2023 Mar; 158(11):114110. PubMed ID: 36948833 [TBL] [Abstract][Full Text] [Related]
20. Measurement of the first ionization potential of lawrencium, element 103. Sato TK; Asai M; Borschevsky A; Stora T; Sato N; Kaneya Y; Tsukada K; Düllmann ChE; Eberhardt K; Eliav E; Ichikawa S; Kaldor U; Kratz JV; Miyashita S; Nagame Y; Ooe K; Osa A; Renisch D; Runke J; Schädel M; Thörle-Pospiech P; Toyoshima A; Trautmann N Nature; 2015 Apr; 520(7546):209-11. PubMed ID: 25855457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]