These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32227968)

  • 1. Structure of the Electrical Double Layer Revisited: Electrode Capacitance in Aqueous Solutions.
    Khademi M; Barz DPJ
    Langmuir; 2020 Apr; 36(16):4250-4260. PubMed ID: 32227968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-Nanotube-Electrolyte Interface: Quantum and Electric Double Layer Capacitance.
    Li J; Pham PHQ; Zhou W; Pham TD; Burke PJ
    ACS Nano; 2018 Oct; 12(10):9763-9774. PubMed ID: 30226746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalization of the Gouy-Chapman-Stern model of an electric double layer for a morphologically complex electrode: deterministic and stochastic morphologies.
    Kant R; Singh MB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052303. PubMed ID: 24329260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of electrochemical impedance spectroscopy to determine double-layer capacitance in doped nonpolar liquids.
    Yezer BA; Khair AS; Sides PJ; Prieve DC
    J Colloid Interface Sci; 2015 Jul; 449():2-12. PubMed ID: 25315405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface structure at the ionic liquid-electrified metal interface.
    Baldelli S
    Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge and Electrical Double Layer Formation in a Nonpolar Solvent Using a Nonionic Surfactant.
    Khademi M; Cheng SSY; Barz DPJ
    Langmuir; 2020 May; 36(19):5156-5164. PubMed ID: 32326706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double Layer at the Pt(111)-Aqueous Electrolyte Interface: Potential of Zero Charge and Anomalous Gouy-Chapman Screening.
    Ojha K; Arulmozhi N; Aranzales D; Koper MTM
    Angew Chem Int Ed Engl; 2020 Jan; 59(2):711-715. PubMed ID: 31682314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential capacitance of the double layer at the electrode/ionic liquids interface.
    Lockett V; Horne M; Sedev R; Rodopoulos T; Ralston J
    Phys Chem Chem Phys; 2010 Oct; 12(39):12499-512. PubMed ID: 20721389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tail effect on the shape of an electrical double layer differential capacitance curve.
    Henderson D; Lamperski S; Bari Bhuiyan L; Wu J
    J Chem Phys; 2013 Apr; 138(14):144704. PubMed ID: 24981541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water Structure in the Electrical Double Layer and the Contributions to the Total Interfacial Potential at Different Surface Charge Densities.
    Rehl B; Ma E; Parshotam S; DeWalt-Kerian EL; Liu T; Geiger FM; Gibbs JM
    J Am Chem Soc; 2022 Sep; 144(36):16338-16349. PubMed ID: 36042195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes.
    Padmaraj D; Miller JH; Wosik J; Zagozdzon-Wosik W
    Biosens Bioelectron; 2011 Nov; 29(1):13-7. PubMed ID: 21872464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-layer in ionic liquids: paradigm change?
    Kornyshev AA
    J Phys Chem B; 2007 May; 111(20):5545-57. PubMed ID: 17469864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Modeling and Validation of Thermally Induced Electrical Capacitance Changes for Lipid Bilayer Membranes Irradiated by Pulsed Lasers.
    Ebtehaj Z; Hatef A; Malekmohammad M; Soltanolkotabi M
    J Phys Chem B; 2018 Jul; 122(29):7319-7331. PubMed ID: 29912560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unexpectedly High Capacitance of the Metal Nanoparticle/Water Interface: Molecular-Level Insights into the Electrical Double Layer.
    Azimzadeh Sani M; Pavlopoulos NG; Pezzotti S; Serva A; Cignoni P; Linnemann J; Salanne M; Gaigeot MP; Tschulik K
    Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202112679. PubMed ID: 34796598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of a Stern Layer from the Incorporation of Hydration Interactions into the Gouy-Chapman Model of the Electrical Double Layer.
    Brown MA; Bossa GV; May S
    Langmuir; 2015 Oct; 31(42):11477-83. PubMed ID: 26474036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-layer structure of the Pt(111)-aqueous electrolyte interface.
    Ojha K; Doblhoff-Dier K; Koper MTM
    Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35042778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy.
    Norlin A; Pan J; Leygraf C
    Biomol Eng; 2002 Aug; 19(2-6):67-71. PubMed ID: 12202164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the electrical double layer at the ice-water interface.
    Daigle H
    J Chem Phys; 2021 Jun; 154(21):214703. PubMed ID: 34240978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal electrolytic chloriding of silver ink electrodes for use in electrical impedance tomography.
    McAdams ET; Henry P; Anderson JM; Jossinet J
    Clin Phys Physiol Meas; 1992; 13 Suppl A():19-23. PubMed ID: 1587099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sandblasting improves the performance of electrodes of miniature electrical impedance tomography via double layer capacitance.
    Gatabi ZR; Mohammadpour R; Gatabi JR; Mirhoseini M; Ahmadi M; Sasanpour P
    Heliyon; 2020 Apr; 6(4):e03652. PubMed ID: 32258511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.