These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 32228591)
21. High-efficiency bioconversion of phytosterol to bisnoralcohol by metabolically engineered Mycobacterium neoaurum in a micro-emulsion system. Wang X; Ke X; Dong H; Liu Z; Zheng Y Biotechnol J; 2024 Sep; 19(9):e2400387. PubMed ID: 39295572 [TBL] [Abstract][Full Text] [Related]
22. Whole-genome and enzymatic analyses of an androstenedione-producing Mycobacterium strain with residual phytosterol-degrading pathways. Wang H; Song S; Peng F; Yang F; Chen T; Li X; Cheng X; He Y; Huang Y; Su Z Microb Cell Fact; 2020 Oct; 19(1):187. PubMed ID: 33008397 [TBL] [Abstract][Full Text] [Related]
23. A recycled batch biotransformation strategy for 22-hydroxy-23,24-bisnorchol-4-ene-3-one production from high concentration of phytosterols by mycobacterial resting cells. Hu Y; Wang D; Wang X; Wei D Biotechnol Lett; 2020 Dec; 42(12):2589-2594. PubMed ID: 32804273 [TBL] [Abstract][Full Text] [Related]
24. Driving the conversion of phytosterol to 9α-hydroxy-4-androstene-3,17-dione in Mycolicibacterium neoaurum by engineering the supply and regeneration of flavin adenine dinucleotide. Song L; Ke J; Luo ZK; Xiong LB; Dong YG; Wei DZ; Wang FQ Biotechnol Biofuels Bioprod; 2023 Jun; 16(1):98. PubMed ID: 37291661 [TBL] [Abstract][Full Text] [Related]
25. Unravelling and engineering an operon involved in the side-chain degradation of sterols in Mycolicibacterium neoaurum for the production of steroid synthons. Zhao YQ; Liu YJ; Song L; Yu D; Liu K; Liu K; Gao B; Tao XY; Xiong LB; Wang FQ; Wei DZ Biotechnol Biofuels Bioprod; 2023 Aug; 16(1):121. PubMed ID: 37533054 [TBL] [Abstract][Full Text] [Related]
26. Enhancing production and purity of 9-OH-AD from phytosterols by balancing metabolic flux of the side-chain degradation and 9-position hydroxylation in Mycobacterium neoaurum. Zhu X; Wang X; Zhang J; Wang X Biotechnol J; 2024 Jan; 19(1):e2300439. PubMed ID: 38129322 [TBL] [Abstract][Full Text] [Related]
27. Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Zhao A; Zhang X; Li Y; Wang Z; Lv Y; Liu J; Alam MA; Xiong W; Xu J Biotechnol Adv; 2021 Dec; 53():107860. PubMed ID: 34710554 [TBL] [Abstract][Full Text] [Related]
28. Obtaining of 24-Norchol-4-ene-3,22-dione from Phytosterol with Mutants of Mycolicibacterium neoaurum. Dovbnya DV; Ivashina TV; Khomutov SM; Shutov AA; Deshcherevskaya NO; Donova MV Methods Mol Biol; 2023; 2704():291-312. PubMed ID: 37642852 [TBL] [Abstract][Full Text] [Related]
29. Efficient Production of 9,22-Dihydroxy-23,24-bisnorchol-4-ene-3-one from Phytosterols by Modifying Multiple Genes in Han S; Liu X; He B; Zhai X; Yuan C; Li Y; Lin W; Wang H; Zhang B Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612391 [TBL] [Abstract][Full Text] [Related]
30. Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Gao LY; Laval F; Lawson EH; Groger RK; Woodruff A; Morisaki JH; Cox JS; Daffe M; Brown EJ Mol Microbiol; 2003 Sep; 49(6):1547-63. PubMed ID: 12950920 [TBL] [Abstract][Full Text] [Related]
31. A new steroid-transforming strain of Mycobacterium neoaurum and cloning of 3-ketosteroid 9alpha-hydroxylase in NwIB-01. Wei W; Fan S; Wang F; Wei D Appl Biochem Biotechnol; 2010 Nov; 162(5):1446-56. PubMed ID: 20204712 [TBL] [Abstract][Full Text] [Related]
32. Single nucleotide polymorphism analysis for the production of valuable steroid intermediates in Mycobacterium neoaurum. Liu M; Zhu ZT; Tao XY; Wang FQ; Wei DZ Biotechnol Lett; 2016 Nov; 38(11):1881-1892. PubMed ID: 27571967 [TBL] [Abstract][Full Text] [Related]
33. Efficient One-Step Biocatalytic Multienzyme Cascade Strategy for Direct Conversion of Phytosterol to C-17-Hydroxylated Steroids. Tang R; Ren X; Xia M; Shen Y; Tu L; Luo J; Zhang Q; Wang Y; Ji P; Wang M Appl Environ Microbiol; 2021 Nov; 87(24):e0032121. PubMed ID: 34586911 [TBL] [Abstract][Full Text] [Related]
34. Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum. Zhang Y; Zhou X; Wang X; Wang L; Xia M; Luo J; Shen Y; Wang M Microb Cell Fact; 2020 Jan; 19(1):13. PubMed ID: 31992309 [TBL] [Abstract][Full Text] [Related]
35. [Mutation breeding of high 9α-hydroxy-androst-4-ene-3,17- dione transforming strains from phytosterols and their conversion process optimization]. Ma Y; Wang X; Wang M; Li H; Shi J; Xu Z Sheng Wu Gong Cheng Xue Bao; 2017 Jul; 33(7):1198-1206. PubMed ID: 28869739 [TBL] [Abstract][Full Text] [Related]
36. Bioconversion of Phytosterols to 9-Hydroxy-3-Oxo-4,17-Pregadiene-20-Carboxylic Acid Methyl Ester by Enoyl-CoA Deficiency and Modifying Multiple Genes in Mycolicibacterium neoaurum. Yuan C; Song S; He J; Zhang J; Liu X; Pena EL; Sun J; Shi J; Su Z; Zhang B Appl Environ Microbiol; 2022 Nov; 88(22):e0130322. PubMed ID: 36286498 [TBL] [Abstract][Full Text] [Related]
37. Identification of bottlenecks in 4-androstene-3,17-dione/1,4-androstadiene-3,17-dione synthesis by Mycobacterium neoaurum JC-12 through comparative proteomics. Liu C; Shao M; Osire T; Xu Z; Rao Z J Biosci Bioeng; 2021 Mar; 131(3):264-270. PubMed ID: 33308966 [TBL] [Abstract][Full Text] [Related]
38. New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in Zhang Y; Xiao P; Pan D; Zhou X Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982310 [TBL] [Abstract][Full Text] [Related]
39. One-pot biosynthesis of 7β-hydroxyandrost-4-ene-3,17-dione from phytosterols by cofactor regeneration system in engineered mycolicibacterium neoaurum. Zhao YQ; Liu YJ; Ji WT; Liu K; Gao B; Tao XY; Zhao M; Wang FQ; Wei DZ Microb Cell Fact; 2022 Apr; 21(1):59. PubMed ID: 35397581 [TBL] [Abstract][Full Text] [Related]
40. Two-Step Bioprocess for Reducing Nucleus Degradation in Phytosterol Bioconversion by Mycobacterium neoaurum NwIB-R10 Wang X; Hua C; Xu X; Wei D Appl Biochem Biotechnol; 2019 May; 188(1):138-146. PubMed ID: 30370444 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]