These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32228891)

  • 41. Three-dimensional extracellular matrix scaffolds by microfluidic fabrication for long-term spontaneously contracted cardiomyocyte culture.
    Mei JC; Wu AY; Wu PC; Cheng NC; Tsai WB; Yu J
    Tissue Eng Part A; 2014 Nov; 20(21-22):2931-41. PubMed ID: 24851797
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering.
    Kai D; Prabhakaran MP; Jin G; Ramakrishna S
    J Biomed Mater Res A; 2011 Dec; 99(3):376-85. PubMed ID: 22021185
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bio-inspired dopamine functionalization of polypyrrole for improved adhesion and conductivity.
    Zhang W; Yang FK; Pan Z; Zhang J; Zhao B
    Macromol Rapid Commun; 2014 Feb; 35(3):350-4. PubMed ID: 24338801
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering.
    Yang B; Yao F; Hao T; Fang W; Ye L; Zhang Y; Wang Y; Li J; Wang C
    Adv Healthc Mater; 2016 Feb; 5(4):474-88. PubMed ID: 26626543
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Construction of scaffolds composed of acellular cardiac extracellular matrix for myocardial tissue engineering.
    Esmaeili Pourfarhangi K; Mashayekhan S; Asl SG; Hajebrahimi Z
    Biologicals; 2018 May; 53():10-18. PubMed ID: 29625872
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A conductive cell-delivery construct as a bioengineered patch that can improve electrical propagation and synchronize cardiomyocyte contraction for heart repair.
    Chen S; Hsieh MH; Li SH; Wu J; Weisel RD; Chang Y; Sung HW; Li RK
    J Control Release; 2020 Apr; 320():73-82. PubMed ID: 31958479
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrohydrodynamic 3D printing of layer-specifically oriented, multiscale conductive scaffolds for cardiac tissue engineering.
    Lei Q; He J; Li D
    Nanoscale; 2019 Aug; 11(32):15195-15205. PubMed ID: 31380883
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-Dimensional Electroconductive Hyaluronic Acid Hydrogels Incorporated with Carbon Nanotubes and Polypyrrole by Catechol-Mediated Dispersion Enhance Neurogenesis of Human Neural Stem Cells.
    Shin J; Choi EJ; Cho JH; Cho AN; Jin Y; Yang K; Song C; Cho SW
    Biomacromolecules; 2017 Oct; 18(10):3060-3072. PubMed ID: 28876908
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aligned and electrically conductive 3D collagen scaffolds for skeletal muscle tissue engineering.
    Basurto IM; Mora MT; Gardner GM; Christ GJ; Caliari SR
    Biomater Sci; 2021 Jun; 9(11):4040-4053. PubMed ID: 33899845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation.
    Ganji Y; Li Q; Quabius ES; Böttner M; Selhuber-Unkel C; Kasra M
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():10-18. PubMed ID: 26652343
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult.
    Silva AC; Rodrigues SC; Caldeira J; Nunes AM; Sampaio-Pinto V; Resende TP; Oliveira MJ; Barbosa MA; Thorsteinsdóttir S; Nascimento DS; Pinto-do-Ó P
    Biomaterials; 2016 Oct; 104():52-64. PubMed ID: 27424216
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of electrospun poly (lactide-co-glycolide)-fibrin multiscale scaffold for myocardial regeneration in vitro.
    Sreerekha PR; Menon D; Nair SV; Chennazhi KP
    Tissue Eng Part A; 2013 Apr; 19(7-8):849-59. PubMed ID: 23083104
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Human placenta hydrogel reduces scarring in a rat model of cardiac ischemia and enhances cardiomyocyte and stem cell cultures.
    Francis MP; Breathwaite E; Bulysheva AA; Varghese F; Rodriguez RU; Dutta S; Semenov I; Ogle R; Huber A; Tichy AM; Chen S; Zemlin C
    Acta Biomater; 2017 Apr; 52():92-104. PubMed ID: 27965171
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation of cardiac extracellular matrix scaffolds by decellularization of human myocardium.
    Oberwallner B; Brodarac A; Choi YH; Saric T; Anić P; Morawietz L; Stamm C
    J Biomed Mater Res A; 2014 Sep; 102(9):3263-72. PubMed ID: 24142588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation of an Electrically Conductive Graphene Oxide/Chitosan Scaffold for Cardiac Tissue Engineering.
    Jiang L; Chen D; Wang Z; Zhang Z; Xia Y; Xue H; Liu Y
    Appl Biochem Biotechnol; 2019 Aug; 188(4):952-964. PubMed ID: 30740624
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photoluminescent functionalized carbon quantum dots loaded electroactive Silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering.
    Yan C; Ren Y; Sun X; Jin L; Liu X; Chen H; Wang K; Yu M; Zhao Y
    J Photochem Photobiol B; 2020 Jan; 202():111680. PubMed ID: 31810038
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced cardiomyogenic lineage differentiation of adult bone-marrow-derived stem cells grown on cardiogel.
    Sreejit P; Verma RS
    Cell Tissue Res; 2013 Sep; 353(3):443-56. PubMed ID: 23771778
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells.
    Yang Q; Peng J; Guo Q; Huang J; Zhang L; Yao J; Yang F; Wang S; Xu W; Wang A; Lu S
    Biomaterials; 2008 May; 29(15):2378-87. PubMed ID: 18313139
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression.
    You JO; Rafat M; Ye GJ; Auguste DT
    Nano Lett; 2011 Sep; 11(9):3643-8. PubMed ID: 21800912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.