These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32228891)

  • 61. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells.
    Yang Q; Peng J; Guo Q; Huang J; Zhang L; Yao J; Yang F; Wang S; Xu W; Wang A; Lu S
    Biomaterials; 2008 May; 29(15):2378-87. PubMed ID: 18313139
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression.
    You JO; Rafat M; Ye GJ; Auguste DT
    Nano Lett; 2011 Sep; 11(9):3643-8. PubMed ID: 21800912
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optimizing C2C12 myoblast differentiation using polycaprolactone-polypyrrole copolymer scaffolds.
    Browe D; Freeman J
    J Biomed Mater Res A; 2019 Jan; 107(1):220-231. PubMed ID: 30378775
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S
    Int J Cardiol; 2013 Aug; 167(4):1461-8. PubMed ID: 22564386
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Novel biomimetic fiber incorporated scaffolds for tissue engineering.
    Yongcong F; Zhang T; Liverani L; Boccaccini AR; Sun W
    J Biomed Mater Res A; 2019 Dec; 107(12):2694-2705. PubMed ID: 31390481
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering.
    LaNasa SM; Bryant SJ
    Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering.
    Gelmi A; Cieslar-Pobuda A; de Muinck E; Los M; Rafat M; Jager EW
    Adv Healthc Mater; 2016 Jun; 5(12):1471-80. PubMed ID: 27126086
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating.
    Hsiao CW; Bai MY; Chang Y; Chung MF; Lee TY; Wu CT; Maiti B; Liao ZX; Li RK; Sung HW
    Biomaterials; 2013 Jan; 34(4):1063-72. PubMed ID: 23164424
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nanoparticle-Based Hybrid Scaffolds for Deciphering the Role of Multimodal Cues in Cardiac Tissue Engineering.
    Lee J; Manoharan V; Cheung L; Lee S; Cha BH; Newman P; Farzad R; Mehrotra S; Zhang K; Khan F; Ghaderi M; Lin YD; Aftab S; Mostafalu P; Miscuglio M; Li J; Mandal BB; Hussain MA; Wan KT; Tang XS; Khademhosseini A; Shin SR
    ACS Nano; 2019 Nov; 13(11):12525-12539. PubMed ID: 31621284
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Engineered heart slices for electrophysiological and contractile studies.
    Blazeski A; Kostecki GM; Tung L
    Biomaterials; 2015 Jul; 55():119-28. PubMed ID: 25934457
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis.
    Scott L; Elídóttir K; Jeevaratnam K; Jurewicz I; Lewis R
    Ann N Y Acad Sci; 2022 Sep; 1515(1):105-119. PubMed ID: 35676231
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro.
    Das S; Kim SW; Choi YJ; Lee S; Lee SH; Kong JS; Park HJ; Cho DW; Jang J
    Acta Biomater; 2019 Sep; 95():188-200. PubMed ID: 30986526
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fibroblasts facilitate the engraftment of embryonic stem cell-derived cardiomyocytes on three-dimensional collagen matrices and aggregation in hanging drops.
    Pfannkuche K; Neuss S; Pillekamp F; Frenzel LP; Attia W; Hannes T; Salber J; Hoss M; Zenke M; Fleischmann BK; Hescheler J; Sarić T
    Stem Cells Dev; 2010 Oct; 19(10):1589-99. PubMed ID: 20175666
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering.
    Mombini S; Mohammadnejad J; Bakhshandeh B; Narmani A; Nourmohammadi J; Vahdat S; Zirak S
    Int J Biol Macromol; 2019 Nov; 140():278-287. PubMed ID: 31400428
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Physical, contractile and calcium handling properties of neonatal cardiac myocytes cultured on different matrices.
    Bick RJ; Snuggs MB; Poindexter BJ; Buja LM; Van Winkle WB
    Cell Adhes Commun; 1998; 6(4):301-10. PubMed ID: 9865464
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Decellularized muscle-derived hydrogels support in vitro cardiac microtissue fabrication.
    Rajabi S; Aghdami N; Varzideh F; Parchehbaf-Kashani M; Nobakht Lahrood F
    J Biomed Mater Res B Appl Biomater; 2020 Nov; 108(8):3302-3310. PubMed ID: 32524765
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering.
    Elamparithi A; Punnoose AM; Kuruvilla S
    Artif Cells Nanomed Biotechnol; 2016 Aug; 44(5):1318-25. PubMed ID: 25960178
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications.
    Gorain B; Choudhury H; Pandey M; Kesharwani P; Abeer MM; Tekade RK; Hussain Z
    Biomed Pharmacother; 2018 Aug; 104():496-508. PubMed ID: 29800914
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells.
    Almeida HV; Liu Y; Cunniffe GM; Mulhall KJ; Matsiko A; Buckley CT; O'Brien FJ; Kelly DJ
    Acta Biomater; 2014 Oct; 10(10):4400-9. PubMed ID: 24907658
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The influence of electrically conductive and non-conductive nanocomposite scaffolds on the maturation and excitability of engineered cardiac tissues.
    Navaei A; Rahmani Eliato K; Ros R; Migrino RQ; Willis BC; Nikkhah M
    Biomater Sci; 2019 Jan; 7(2):585-595. PubMed ID: 30426116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.