These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 32228943)
1. What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti Shi A; Zhu C; Fu S; Wang R; Qin G; Chen D; Zhang E Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110548. PubMed ID: 32228943 [TBL] [Abstract][Full Text] [Related]
2. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys. Chen M; Zhang E; Zhang L Mater Sci Eng C Mater Biol Appl; 2016 May; 62():350-60. PubMed ID: 26952433 [TBL] [Abstract][Full Text] [Related]
3. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys. Chen M; Yang L; Zhang L; Han Y; Lu Z; Qin G; Zhang E Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():906-917. PubMed ID: 28415546 [TBL] [Abstract][Full Text] [Related]
4. Titanium alloys with varying surface micro-area potential differences have antibacterial abilities and a favorable cellular response. Wang C; Hou Y; Fu S; Zhang E; Zhang Z; Bai B Clin Oral Investig; 2023 Sep; 27(9):4957-4971. PubMed ID: 37329465 [TBL] [Abstract][Full Text] [Related]
5. Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching. Lei Z; Zhang H; Zhang E; You J; Ma X; Bai X Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():121-131. PubMed ID: 30184735 [TBL] [Abstract][Full Text] [Related]
6. Effect of ultrasonic micro-arc oxidation on the antibacterial properties and cell biocompatibility of Ti-Cu alloy for biomedical application. Hu J; Li H; Wang X; Yang L; Chen M; Wang R; Qin G; Chen DF; Zhang E Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():110921. PubMed ID: 32600677 [TBL] [Abstract][Full Text] [Related]
7. Antibacterial abilities and biocompatibilities of Ti-Ag alloys with nanotubular coatings. Liu X; Tian A; You J; Zhang H; Wu L; Bai X; Lei Z; Shi X; Xue X; Wang H Int J Nanomedicine; 2016; 11():5743-5755. PubMed ID: 27843315 [TBL] [Abstract][Full Text] [Related]
8. Antibacterial effect of TiAg alloy motivated by Ag-containing phases. Fu S; Zhang Y; Qin G; Zhang E Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112266. PubMed ID: 34474825 [TBL] [Abstract][Full Text] [Related]
9. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti-Cu alloys. Zhang E; Ren J; Li S; Yang L; Qin G Biomed Mater; 2016 Oct; 11(6):065001. PubMed ID: 27767022 [TBL] [Abstract][Full Text] [Related]
10. Titanium-Silver Alloy Miniplates for Mandibular Fixation: In Vitro and In Vivo Study. Lee JH; Kwon JS; Moon SK; Uhm SH; Choi BH; Joo UH; Kim KM; Kim KN J Oral Maxillofac Surg; 2016 Aug; 74(8):1622.e1-1622.e12. PubMed ID: 27192403 [TBL] [Abstract][Full Text] [Related]
11. Bioactive Coating on Ti Alloy with High Osseointegration and Antibacterial Ag Nanoparticles. Sobolev A; Valkov A; Kossenko A; Wolicki I; Zinigrad M; Borodianskiy K ACS Appl Mater Interfaces; 2019 Oct; 11(43):39534-39544. PubMed ID: 31590486 [TBL] [Abstract][Full Text] [Related]
12. Effect of surface treatments on the surface morphology, corrosion property, and antibacterial property of Ti-10Cu sintered alloy. Zhang E; Liu C Biomed Mater; 2015 Jul; 10(4):045009. PubMed ID: 26201969 [TBL] [Abstract][Full Text] [Related]
13. Development of silver-containing austenite antibacterial stainless steels for biomedical applications part I: microstructure characteristics, mechanical properties and antibacterial mechanisms. Huang CF; Chiang HJ; Lan WC; Chou HH; Ou KL; Yu CH Biofouling; 2011 May; 27(5):449-57. PubMed ID: 21598123 [TBL] [Abstract][Full Text] [Related]
14. Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys. Liu J; Li F; Liu C; Wang H; Ren B; Yang K; Zhang E Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():392-400. PubMed ID: 24411393 [TBL] [Abstract][Full Text] [Related]
15. The antibacterial properties and biocompatibility of a Ti-Cu sintered alloy for biomedical application. Liu J; Zhang X; Wang H; Li F; Li M; Yang K; Zhang E Biomed Mater; 2014 Apr; 9(2):025013. PubMed ID: 24565798 [TBL] [Abstract][Full Text] [Related]
16. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys. Zhang E; Li S; Ren J; Zhang L; Han Y Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():760-8. PubMed ID: 27612770 [TBL] [Abstract][Full Text] [Related]
17. Properties of experimental titanium-silver-copper alloys for dental applications. Kang DK; Moon SK; Oh KT; Choi GS; Kim KN J Biomed Mater Res B Appl Biomater; 2009 Jul; 90(1):446-51. PubMed ID: 19165731 [TBL] [Abstract][Full Text] [Related]
18. A high-hydrophilic Cu Zhao X; Cai D; Hu J; Nie J; Chen D; Qin G; Zhang E Biomater Adv; 2022 Sep; 140():213044. PubMed ID: 35932660 [TBL] [Abstract][Full Text] [Related]
19. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application. Zhang E; Wang X; Chen M; Hou B Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1210-21. PubMed ID: 27612819 [TBL] [Abstract][Full Text] [Related]
20. Promotion of bone formation and antibacterial properties of titanium coated with porous Si/Ag-doped titanium dioxide. Zhao Q; Wu J; Li Y; Xu R; Zhu X; Jiao Y; Luo R; Ni X Front Bioeng Biotechnol; 2022; 10():1001514. PubMed ID: 36338114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]