These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 32228954)
1. Elucidation of bio-inspired hydroxyapatie crystallization on oxygen-plasma modified 3D printed poly-caprolactone scaffolds. Murab S; Gruber SMS; Lin CJ; Whitlock P Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110529. PubMed ID: 32228954 [TBL] [Abstract][Full Text] [Related]
2. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix. Nyberg E; Rindone A; Dorafshar A; Grayson WL Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692 [TBL] [Abstract][Full Text] [Related]
3. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related]
4. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Neufurth M; Wang X; Wang S; Steffen R; Ackermann M; Haep ND; Schröder HC; Müller WEG Acta Biomater; 2017 Dec; 64():377-388. PubMed ID: 28966095 [TBL] [Abstract][Full Text] [Related]
5. A 3D-Printed Polycaprolactone/Marine Collagen Scaffold Reinforced with Carbonated Hydroxyapatite from Fish Bones for Bone Regeneration. Kim SC; Heo SY; Oh GW; Yi M; Jung WK Mar Drugs; 2022 May; 20(6):. PubMed ID: 35736147 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
7. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
8. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
9. Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Lee CM; Yang SW; Jung SC; Kim BH J Nanosci Nanotechnol; 2017 Apr; 17(4):2747-750. PubMed ID: 29664596 [TBL] [Abstract][Full Text] [Related]
10. Effect of nanodiamonds surface deposition on hydrophilicity, bulk degradation and ElBakry HA; Ammar MM; Moussa TA Biomed Mater; 2024 Jul; 19(5):. PubMed ID: 38917826 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics. Moghaddaszadeh A; Seddiqi H; Najmoddin N; Abbasi Ravasjani S; Klein-Nulend J Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34670200 [TBL] [Abstract][Full Text] [Related]
12. Process-Structure-Quality Relationships of Three-Dimensional Printed Poly(Caprolactone)-Hydroxyapatite Scaffolds. Gerdes S; Mostafavi A; Ramesh S; Memic A; Rivero IV; Rao P; Tamayol A Tissue Eng Part A; 2020 Mar; 26(5-6):279-291. PubMed ID: 31964254 [TBL] [Abstract][Full Text] [Related]
13. 3D-printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival. Touri M; Moztarzadeh F; Osman NAA; Dehghan MM; Mozafari M Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():236-242. PubMed ID: 29519434 [TBL] [Abstract][Full Text] [Related]
14. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration. Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810 [TBL] [Abstract][Full Text] [Related]
15. Coating of 3D printed PCL/TCP scaffolds using homogenized-fibrillated collagen. Tabatabaei F; Gelin A; Rasoulianboroujeni M; Tayebi L Colloids Surf B Biointerfaces; 2022 Sep; 217():112670. PubMed ID: 35779329 [TBL] [Abstract][Full Text] [Related]
16. 3D-Printed composite scaffolds based on poly(ε-caprolactone) filled with poly(glutamic acid)-modified cellulose nanocrystals for improved bone tissue regeneration. Averianov I; Stepanova M; Solomakha O; Gofman I; Serdobintsev M; Blum N; Kaftuirev A; Baulin I; Nashchekina J; Lavrentieva A; Vinogradova T; Korzhikov-Vlakh V; Korzhikova-Vlakh E J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2422-2437. PubMed ID: 35618683 [TBL] [Abstract][Full Text] [Related]
17. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280 [TBL] [Abstract][Full Text] [Related]
18. 3D-printed polycaprolactone scaffolds coated with beta tricalcium phosphate for bone regeneration. Javkhlan Z; Hsu SH; Chen RS; Chen MH J Formos Med Assoc; 2024 Jan; 123(1):71-77. PubMed ID: 37709573 [TBL] [Abstract][Full Text] [Related]
19. Effect of oxygen plasma etching on pore size-controlled 3D polycaprolactone scaffolds for enhancing the early new bone formation in rabbit calvaria. Kook MS; Roh HS; Kim BH Dent Mater J; 2018 Jul; 37(4):599-610. PubMed ID: 29731489 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]