These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 32228994)
1. Effect of Al addition and space holder content on microstructure and mechanical properties of Ti2Co alloys foams for bone scaffold application. Abhash A; Singh P; Kumar R; Pandey S; Sathaiah S; Md Shafeeq M; Mondal DP Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110600. PubMed ID: 32228994 [TBL] [Abstract][Full Text] [Related]
2. Production and characterization of highly porous biodegradable Mg alloy scaffolds containing Ca, Zn and Co. Mutlu I Biomed Mater Eng; 2018; 29(1):119-135. PubMed ID: 29254078 [TBL] [Abstract][Full Text] [Related]
3. Effect of Mo and space holder content on microstructure, mechanical and corrosion properties in Ti6AlxMo based alloy for bone implant. Gupta J; Ghosh S; Aravindan S Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111962. PubMed ID: 33812590 [TBL] [Abstract][Full Text] [Related]
4. Titanium-nickel shape memory alloy foams for bone tissue engineering. Xiong JY; Li YC; Wang XJ; Hodgson PD; Wen CE J Mech Behav Biomed Mater; 2008 Jul; 1(3):269-73. PubMed ID: 19627791 [TBL] [Abstract][Full Text] [Related]
5. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications. Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847 [TBL] [Abstract][Full Text] [Related]
6. Microstructure and mechanical properties of a newly developed low Young's modulus Ti-15Zr-5Cr-2Al biomedical alloy. Wang P; Wu L; Feng Y; Bai J; Zhang B; Song J; Guan S Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():536-542. PubMed ID: 28024619 [TBL] [Abstract][Full Text] [Related]
8. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys. Wang P; Feng Y; Liu F; Wu L; Guan S Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():148-52. PubMed ID: 25842119 [TBL] [Abstract][Full Text] [Related]
9. Effect of nickel addition on microstructure and properties of Ti-Co-Ni alloys. Chern Lin JH; Chen YF; Ju CP Biomaterials; 1995 Dec; 16(18):1401-7. PubMed ID: 8590767 [TBL] [Abstract][Full Text] [Related]
10. A comparative study on compressive deformation and corrosion behaviour of heat treated Ti4wt%Al foam of different porosity made of milled and unmilled powders. Singh P; Singh IB; Mondal DP Mater Sci Eng C Mater Biol Appl; 2019 May; 98():918-929. PubMed ID: 30813099 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of an experimental Ti-Co alloy for dental restorations. Wang R; Welsch G J Biomed Mater Res B Appl Biomater; 2013 Nov; 101(8):1419-27. PubMed ID: 23744579 [TBL] [Abstract][Full Text] [Related]
12. Porous TiNbZr alloy scaffolds for biomedical applications. Wang X; Li Y; Xiong J; Hodgson PD; Wen C Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597 [TBL] [Abstract][Full Text] [Related]
13. Fatigue behavior of TiNi foams processed by the magnesium space holder technique. Nakaş GI; Dericioglu AF; Bor S J Mech Behav Biomed Mater; 2011 Nov; 4(8):2017-23. PubMed ID: 22098901 [TBL] [Abstract][Full Text] [Related]
14. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium-niobium alloy with low Young's modulus. Bai Y; Deng Y; Zheng Y; Li Y; Zhang R; Lv Y; Zhao Q; Wei S Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():565-576. PubMed ID: 26652409 [TBL] [Abstract][Full Text] [Related]
15. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture. Liu H; Niinomi M; Nakai M; Hieda J; Cho K J Mech Behav Biomed Mater; 2014 Feb; 30():205-13. PubMed ID: 24317494 [TBL] [Abstract][Full Text] [Related]
16. Preparation and properties of biomedical porous titanium alloys by gelcasting. Yang D; Shao H; Guo Z; Lin T; Fan L Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of Ti-Ta-Nb-Mn foams. Aguilar C; Guerra C; Lascano S; Guzman D; Rojas PA; Thirumurugan M; Bejar L; Medina A Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():420-31. PubMed ID: 26478329 [TBL] [Abstract][Full Text] [Related]
18. Study of the compression and wear-resistance properties of freeze-cast Ti and Ti‒5W alloy foams for biomedical applications. Choi H; Shil'ko S; Gubicza J; Choe H J Mech Behav Biomed Mater; 2017 Aug; 72():66-73. PubMed ID: 28458028 [TBL] [Abstract][Full Text] [Related]
19. Effect of niobium content on the microstructure and Young's modulus of Ti-xNb-7Zr alloys for medical implants. Tan MHC; Baghi AD; Ghomashchi R; Xiao W; Oskouei RH J Mech Behav Biomed Mater; 2019 Nov; 99():78-85. PubMed ID: 31344525 [TBL] [Abstract][Full Text] [Related]