These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 32229003)
1. Facile synthesis of large area pebble-like β-NaFeO Durai L; Badhulika S Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110631. PubMed ID: 32229003 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of low-cost sustainable electrocatalyst: a diagnostic tool for multifunctional disorders in human fluids. Sinduja B; Gowthaman NSK; John SA J Mater Chem B; 2020 Oct; 8(41):9502-9511. PubMed ID: 32996975 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Raj MA; John SA Anal Chim Acta; 2013 Apr; 771():14-20. PubMed ID: 23522107 [TBL] [Abstract][Full Text] [Related]
4. A simple electrochemical approach to fabricate functionalized MWCNT-nanogold decorated PEDOT nanohybrid for simultaneous quantification of uric acid, xanthine and hypoxanthine. Sen S; Sarkar P Anal Chim Acta; 2020 Jun; 1114():15-28. PubMed ID: 32359511 [TBL] [Abstract][Full Text] [Related]
5. Brushite nanoparticles based electrochemical sensor for detection of uric acid, xanthine, hypoxanthine and caffeine. Sudhan N; Anitta S; Meenakshi S; Sekar C Anal Biochem; 2022 Dec; 659():114947. PubMed ID: 36216144 [TBL] [Abstract][Full Text] [Related]
6. A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine. Zhang L; Li S; Xin J; Ma H; Pang H; Tan L; Wang X Mikrochim Acta; 2018 Dec; 186(1):9. PubMed ID: 30535722 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode. Kalimuthu P; John SA Talanta; 2010 Mar; 80(5):1686-91. PubMed ID: 20152397 [TBL] [Abstract][Full Text] [Related]
8. One-step solvothermal synthesis of nanoflake-nanorod WS Durai L; Kong CY; Badhulika S Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110217. PubMed ID: 31761166 [TBL] [Abstract][Full Text] [Related]
9. Selective determination of inosine in the presence of uric acid and hypoxanthine using modified electrode. Revin SB; John SA Anal Biochem; 2012 Feb; 421(1):278-84. PubMed ID: 22080039 [TBL] [Abstract][Full Text] [Related]
10. An ultrasensitive electrochemical sensor for simultaneous determination of xanthine, hypoxanthine and uric acid based on Co doped CeO2 nanoparticles. Lavanya N; Sekar C; Murugan R; Ravi G Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():278-86. PubMed ID: 27157753 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous determination of uric acid, xanthine and hypoxanthine at poly(pyrocatechol violet)/functionalized multi-walled carbon nanotubes composite film modified electrode. Wang Y Colloids Surf B Biointerfaces; 2011 Dec; 88(2):614-21. PubMed ID: 21856133 [TBL] [Abstract][Full Text] [Related]
12. The facile and simple synthesis of poly(3,4ethylenedioxythiophene) anchored reduced graphene oxide nanocomposite for biochemical analysis. Dinesh B; Vilian ATE; Kwak CH; Huh YS; Saraswathi R; Han YK Anal Chim Acta; 2019 Oct; 1077():150-159. PubMed ID: 31307704 [TBL] [Abstract][Full Text] [Related]
13. ZnO-CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid. Ghanbari Kh; Hajheidari N Anal Biochem; 2015 Mar; 473():53-62. PubMed ID: 25576954 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(L-arginine)/graphene composite film modified electrode. Zhang F; Wang Z; Zhang Y; Zheng Z; Wang C; Du Y; Ye W Talanta; 2012 May; 93():320-5. PubMed ID: 22483917 [TBL] [Abstract][Full Text] [Related]
15. Nitrogen-doped carbon frameworks decorated with palladium nanoparticles for simultaneous electrochemical voltammetric determination of uric acid and dopamine in the presence of ascorbic acid. Yao Y; Zhong J; Lu Z; Liu X; Wang Y; Liu T; Zou P; Dai X; Wang X; Ding F; Zhou C; Zhao Q; Rao H Mikrochim Acta; 2019 Nov; 186(12):795. PubMed ID: 31734752 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical determination of dopamine and uric acid using a glassy carbon electrode modified with a composite consisting of a Co(II)-based metalorganic framework (ZIF-67) and graphene oxide. Tang J; Jiang S; Liu Y; Zheng S; Bai L; Guo J; Wang J Mikrochim Acta; 2018 Oct; 185(10):486. PubMed ID: 30276484 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous electrochemical determination of xanthine and uric acid at a nanoparticle film electrode. Sun Y; Fei J; Wu K; Hu S Anal Bioanal Chem; 2003 Feb; 375(4):544-9. PubMed ID: 12610708 [TBL] [Abstract][Full Text] [Related]
18. A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Zhao D; Yu G; Tian K; Xu C Biosens Bioelectron; 2016 Aug; 82():119-26. PubMed ID: 27058442 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous determination of ascorbic acid, dopamine and uric acid by a novel electrochemical sensor based on N Jothi L; Neogi S; Jaganathan SK; Nageswaran G Biosens Bioelectron; 2018 May; 105():236-242. PubMed ID: 29412948 [TBL] [Abstract][Full Text] [Related]
20. Morphology-dependent MnO Li Q; Xia Y; Wan X; Yang S; Cai Z; Ye Y; Li G Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110615. PubMed ID: 32228941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]