BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32229063)

  • 1. Organosolv lignin hydrophobic micro- and nanoparticles as a low-carbon footprint biodegradable flotation collector in mineral flotation.
    Hrůzová K; Matsakas L; Sand A; Rova U; Christakopoulos P
    Bioresour Technol; 2020 Jun; 306():123235. PubMed ID: 32229063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some physicochemical aspects of water-soluble mineral flotation.
    Wu Z; Wang X; Liu H; Zhang H; Miller JD
    Adv Colloid Interface Sci; 2016 Sep; 235():190-200. PubMed ID: 27346329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flotation of Smithsonite From Quartz Using Pyrophyllite Nanoparticles as the Natural Non-toxic Collector.
    Pan G; Zou D; Wang Z
    Front Chem; 2021; 9():743482. PubMed ID: 34722456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of humic substances in froth flotation processes.
    Reyes-Bozo L; Vyhmeister E; Godoy-Faúndez A; Higueras P; Fúnez-Guerra C; Valdés-González H; Salazar JL; Herrera-Urbina R
    J Environ Manage; 2019 Dec; 252():109699. PubMed ID: 31614260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing flotation separation of chalcopyrite and magnesium silicate minerals by surface synergism between PAAS and GA.
    Chen Z; Wang Y; Luo L; Peng T; Guo F; Zheng M
    Sci Rep; 2021 Mar; 11(1):6368. PubMed ID: 33737709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular design of flotation collectors: A recent progress.
    Liu G; Yang X; Zhong H
    Adv Colloid Interface Sci; 2017 Aug; 246():181-195. PubMed ID: 28532662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Sodium Alginate on the Flotation Separation of Molybdenite From Chalcopyrite Using Kerosene as Collector.
    Zeng G; Ou L; Zhang W; Zhu Y
    Front Chem; 2020; 8():242. PubMed ID: 32411654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flotation separation of specularite from chlorite using propyl gallate as a collector.
    Gao X; Zhao F; Li M; Hu Y
    RSC Adv; 2020 May; 10(31):18360-18367. PubMed ID: 35517206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of partially replacing amine collectors by a commercial frother in a reverse cationic hematite flotation.
    Kapiamba KF; Kimpiab M
    Heliyon; 2021 Mar; 7(3):e06559. PubMed ID: 33855236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of N-tallow 1,3-propanediamine-dioleate collector on albite and quartz minerals, and selective flotation of albite from greek stefania feldspar ore.
    Vidyadhar A; Hanumantha Rao K; Forssberg KS
    J Colloid Interface Sci; 2002 Apr; 248(1):19-29. PubMed ID: 16290498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N,N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation.
    Liu S; Zhong H; Liu G; Xu Z
    J Colloid Interface Sci; 2018 Feb; 512():701-712. PubMed ID: 29107921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiol-Silylated Cellulose Nanocrystals as Selective Biodepressants in Froth Flotation.
    Ludovici F; Hartmann R; Rudolph M; Liimatainen H
    ACS Sustain Chem Eng; 2023 Nov; 11(45):16176-16184. PubMed ID: 38022739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Use of Styrene-Based Nanoparticles to Mitigate the Effect of Montmorillonite in Copper Sulfide Recovery by Flotation.
    Estrada D; Murga R; Rubilar O; Amalraj J; Gutierrez L; Uribe L
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Optimum Parameters for Flotation of Galena: Effect of Chain Length and Chain Structure of Xanthates on Flotation Recovery.
    Özün S; Ergen G
    ACS Omega; 2019 Jan; 4(1):1516-1524. PubMed ID: 31459415
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Hartmann R; Beaumont M; Pasquie E; Rosenau T; Serna-Guerrero R
    ACS Sustain Chem Eng; 2022 Aug; 10(32):10570-10578. PubMed ID: 35991757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing phosphate ore minerals separation with sustainable flotation reagents: An investigation into highly selective biobased depressants.
    El-Bahi A; Taha Y; Ait-Khouia Y; Hakkou R; Benzaazoua M
    Adv Colloid Interface Sci; 2023 Jul; 317():102921. PubMed ID: 37209485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of molecular assembly between collectors and inhibitors on the flotation of pyrite and talc.
    Long T; Xiao W; Yang W
    R Soc Open Sci; 2019 Oct; 6(10):191133. PubMed ID: 31824721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical importance of pH and collector type on the flotation of sphalerite and galena from a low-grade lead-zinc ore.
    Foroutan A; Abbas Zadeh Haji Abadi M; Kianinia Y; Ghadiri M
    Sci Rep; 2021 Feb; 11(1):3103. PubMed ID: 33542449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Adsorption of Mixed Anionic/Cationic Collectors in a Spodumene-Feldspar Flotation System: Implications for Collector Design.
    Shu K; Xu L; Wu H; Xu Y; Luo L; Yang J; Tang Z; Wang Z
    Langmuir; 2020 Jul; 36(28):8086-8099. PubMed ID: 32559106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and colloidal aspects of collectorless flotation behavior of sulfide and non-sulfide minerals.
    Aghazadeh S; Mousavinezhad SK; Gharabaghi M
    Adv Colloid Interface Sci; 2015 Nov; 225():203-17. PubMed ID: 26601925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.