BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 32229218)

  • 1. Lack of agreement between optimal mean arterial pressure determination using pressure reactivity index versus cerebral oximetry index in hypoxic ischemic brain injury after cardiac arrest.
    Hoiland RL; Sekhon MS; Cardim D; Wood MD; Gooderham P; Foster D; Griesdale DE
    Resuscitation; 2020 Jul; 152():184-191. PubMed ID: 32229218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Optimal Arterial Pressure with Near-Infrared Spectroscopy in Traumatic Brain Injury Patients.
    Oshorov A; Savin I; Alexandrova E; Bragin D
    Adv Exp Med Biol; 2022; 1395():133-137. PubMed ID: 36527627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Burden of Brain Hypoxia and Optimal Mean Arterial Pressure in Patients With Hypoxic Ischemic Brain Injury After Cardiac Arrest.
    Sekhon MS; Gooderham P; Menon DK; Brasher PMA; Foster D; Cardim D; Czosnyka M; Smielewski P; Gupta AK; Ainslie PN; Griesdale DEG
    Crit Care Med; 2019 Jul; 47(7):960-969. PubMed ID: 30889022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deviations from NIRS-derived optimal blood pressure are associated with worse outcomes after pediatric cardiac arrest.
    Kirschen MP; Majmudar T; Beaulieu F; Burnett R; Shaik M; Morgan RW; Baker W; Ko T; Balu R; Agarwal K; Lourie K; Sutton R; Kilbaugh T; Diaz-Arrastia R; Berg R; Topjian A
    Resuscitation; 2021 Nov; 168():110-118. PubMed ID: 34600027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using the relationship between brain tissue regional saturation of oxygen and mean arterial pressure to determine the optimal mean arterial pressure in patients following cardiac arrest: A pilot proof-of-concept study.
    Sekhon MS; Smielewski P; Bhate TD; Brasher PM; Foster D; Menon DK; Gupta AK; Czosnyka M; Henderson WR; Gin K; Wong G; Griesdale DE
    Resuscitation; 2016 Sep; 106():120-5. PubMed ID: 27255957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deviations from PRx-derived optimal blood pressure are associated with mortality after cardiac arrest.
    Kirschen MP; Majmudar T; Diaz-Arrastia R; Berg R; Abella BS; Topjian A; Balu R
    Resuscitation; 2022 Jun; 175():81-87. PubMed ID: 35276311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring cerebral autoregulation after brain injury: multimodal assessment of cerebral slow-wave oscillations using near-infrared spectroscopy.
    Highton D; Ghosh A; Tachtsidis I; Panovska-Griffiths J; Elwell CE; Smith M
    Anesth Analg; 2015 Jul; 121(1):198-205. PubMed ID: 25993387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining Optimal Mean Arterial Pressure After Cardiac Arrest: A Systematic Review.
    Rikhraj KJK; Wood MD; Hoiland RL; Thiara S; Griesdale DEG; Sekhon MS
    Neurocrit Care; 2021 Apr; 34(2):621-634. PubMed ID: 32572823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are NIRS-derived cerebral autoregulation and ABPopt values different between hemispheres in hypoxic-ischemic brain injury patients following cardiac arrest?
    Hazenberg L; Aries M; Beqiri E; Mess WH; van Mook W; Delnoij T; Zeiler FA; van Kuijk S; Tas J
    J Clin Monit Comput; 2023 Oct; 37(5):1427-1430. PubMed ID: 37195622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of wavelet and correlation indices of cerebral autoregulation in a pediatric swine model of cardiac arrest.
    Liu X; Hu X; Brady KM; Koehler R; Smielewski P; Czosnyka M; Donnelly J; Lee JK
    Sci Rep; 2020 Apr; 10(1):5926. PubMed ID: 32245979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraoperative monitoring of cerebrovascular autoregulation in infants and toddlers receiving major elective surgery to determine the individually optimal blood pressure - a pilot study.
    Iller M; Neunhoeffer F; Heimann L; Zipfel J; Schuhmann MU; Scherer S; Dietzel M; Fuchs J; Hofbeck M; Hieber S; Fideler F
    Front Pediatr; 2023; 11():1110453. PubMed ID: 36865688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrovascular pressure reactivity and intracranial pressure are associated with neurologic outcome after hypoxic-ischemic brain injury.
    Balu R; Rajagopalan S; Baghshomali S; Kirschen M; Amurthur A; Kofke WA; Abella BS
    Resuscitation; 2021 Jul; 164():114-121. PubMed ID: 33930501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of Intracranial Pressure-Derived Cerebrovascular Reactivity Indices against the Lower Limit of Autoregulation, Part II: Experimental Model of Arterial Hypotension.
    Zeiler FA; Lee JK; Smielewski P; Czosnyka M; Brady K
    J Neurotrauma; 2018 Dec; 35(23):2812-2819. PubMed ID: 29808745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia.
    Burton VJ; Gerner G; Cristofalo E; Chung SE; Jennings JM; Parkinson C; Koehler RC; Chavez-Valdez R; Johnston MV; Northington FJ; Lee JK
    BMC Neurol; 2015 Oct; 15():209. PubMed ID: 26486728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of Pressure Reactivity and Pulse Amplitude Indices against the Lower Limit of Autoregulation, Part I: Experimental Intracranial Hypertension.
    Zeiler FA; Donnelly J; Calviello L; Lee JK; Smielewski P; Brady K; Kim DJ; Czosnyka M
    J Neurotrauma; 2018 Dec; 35(23):2803-2811. PubMed ID: 29978744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of Outcomes with Model-Based Indices of Cerebral Autoregulation After Pediatric Traumatic Brain Injury.
    Appavu B; Temkit M'; Foldes S; Burrows BT; Kuwabara M; Jacobson A; Adelson PD
    Neurocrit Care; 2021 Dec; 35(3):640-650. PubMed ID: 34268644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive autoregulation monitoring in a swine model of pediatric cardiac arrest.
    Lee JK; Yang ZJ; Wang B; Larson AC; Jamrogowicz JL; Kulikowicz E; Kibler KK; Mytar JO; Carter EL; Burman HT; Brady KM; Smielewski P; Czosnyka M; Koehler RC; Shaffner DH
    Anesth Analg; 2012 Apr; 114(4):825-36. PubMed ID: 22314692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data.
    Depreitere B; Güiza F; Van den Berghe G; Schuhmann MU; Maier G; Piper I; Meyfroidt G
    J Neurosurg; 2014 Jun; 120(6):1451-7. PubMed ID: 24745709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebrovascular autoregulation in pediatric moyamoya disease.
    Lee JK; Williams M; Jennings JM; Jamrogowicz JL; Larson AC; Jordan LC; Heitmiller ES; Hogue CW; Ahn ES
    Paediatr Anaesth; 2013 Jun; 23(6):547-56. PubMed ID: 23506446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of Near-Infrared Spectroscopy for Monitoring Cerebral Autoregulation in Comatose Patients.
    Rivera-Lara L; Geocadin R; Zorrilla-Vaca A; Healy R; Radzik BR; Palmisano C; Mirski M; Ziai WC; Hogue C
    Neurocrit Care; 2017 Dec; 27(3):362-369. PubMed ID: 28664392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.