BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 32229803)

  • 1. The emerging role of myeloid-derived suppressor cells in radiotherapy.
    Kang C; Jeong SY; Song SY; Choi EK
    Radiat Oncol J; 2020 Mar; 38(1):1-10. PubMed ID: 32229803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy.
    Wu Y; Yi M; Niu M; Mei Q; Wu K
    Mol Cancer; 2022 Sep; 21(1):184. PubMed ID: 36163047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myeloid-derived suppressor cells: The green light for myeloma immune escape.
    Malek E; de Lima M; Letterio JJ; Kim BG; Finke JH; Driscoll JJ; Giralt SA
    Blood Rev; 2016 Sep; 30(5):341-8. PubMed ID: 27132116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors.
    Hou A; Hou K; Huang Q; Lei Y; Chen W
    Front Immunol; 2020; 11():783. PubMed ID: 32508809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel therapeutic strategies targeting myeloid-derived suppressor cell immunosuppressive mechanisms for cancer treatment.
    Jou E; Chaudhury N; Nasim F
    Explor Target Antitumor Ther; 2024; 5(1):187-207. PubMed ID: 38464388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myeloid-Derived Suppressor Cells: A New and Pivotal Player in Colorectal Cancer Progression.
    Yin K; Xia X; Rui K; Wang T; Wang S
    Front Oncol; 2020; 10():610104. PubMed ID: 33384962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing immunotherapy response in melanoma: myeloid-derived suppressor cells as a therapeutic target.
    Ozbay Kurt FG; Lasser S; Arkhypov I; Utikal J; Umansky V
    J Clin Invest; 2023 Jul; 133(13):. PubMed ID: 37395271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization and quantification of
    Hoffmann SHL; Reck DI; Maurer A; Fehrenbacher B; Sceneay JE; Poxleitner M; Öz HH; Ehrlichmann W; Reischl G; Fuchs K; Schaller M; Hartl D; Kneilling M; Möller A; Pichler BJ; Griessinger CM
    Theranostics; 2019; 9(20):5869-5885. PubMed ID: 31534525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer.
    Law AMK; Valdes-Mora F; Gallego-Ortega D
    Cells; 2020 Feb; 9(3):. PubMed ID: 32121014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Myeloid-Derived Suppressor Cells in Cancer Immunotherapy.
    Wang Y; Jia A; Bi Y; Wang Y; Yang Q; Cao Y; Li Y; Liu G
    Cancers (Basel); 2020 Sep; 12(9):. PubMed ID: 32942545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppressing MDSC Recruitment to the Tumor Microenvironment by Antagonizing CXCR2 to Enhance the Efficacy of Immunotherapy.
    Bullock K; Richmond A
    Cancers (Basel); 2021 Dec; 13(24):. PubMed ID: 34944914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myeloid-derived suppressor cells in cancer: therapeutic targets to overcome tumor immune evasion.
    Lu J; Luo Y; Rao D; Wang T; Lei Z; Chen X; Zhang B; Li Y; Liu B; Xia L; Huang W
    Exp Hematol Oncol; 2024 Apr; 13(1):39. PubMed ID: 38609997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming Resistance to Combination Radiation-Immunotherapy: A Focus on Contributing Pathways Within the Tumor Microenvironment.
    Darragh LB; Oweida AJ; Karam SD
    Front Immunol; 2018; 9():3154. PubMed ID: 30766539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression.
    Fleming V; Hu X; Weber R; Nagibin V; Groth C; Altevogt P; Utikal J; Umansky V
    Front Immunol; 2018; 9():398. PubMed ID: 29552012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment.
    Dysthe M; Parihar R
    Adv Exp Med Biol; 2020; 1224():117-140. PubMed ID: 32036608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myeloid-derived suppressor cells-a new therapeutic target to overcome resistance to cancer immunotherapy.
    Chesney JA; Mitchell RA; Yaddanapudi K
    J Leukoc Biol; 2017 Sep; 102(3):727-740. PubMed ID: 28546500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of Immunosuppression by Oligonucleotide-Based Molecules and Small Molecules Targeting Myeloid-Derived Suppressor Cells.
    Lim J; Lee A; Lee HG; Lim JS
    Biomol Ther (Seoul); 2020 Jan; 28(1):1-17. PubMed ID: 31431006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting myeloid-derived suppressor cells in the treatment of hepatocellular carcinoma: current state and future perspectives.
    Lu LC; Chang CJ; Hsu CH
    J Hepatocell Carcinoma; 2019; 6():71-84. PubMed ID: 31123667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade.
    Grauers Wiktorin H; Nilsson MS; Kiffin R; Sander FE; Lenox B; Rydström A; Hellstrand K; Martner A
    Cancer Immunol Immunother; 2019 Feb; 68(2):163-174. PubMed ID: 30315349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle Systems Modulating Myeloid-Derived Suppressor Cells for Cancer Immunotherapy.
    Wilkerson A; Kim J; Huang AY; Zhang M
    Curr Top Med Chem; 2017; 17(16):1843-1857. PubMed ID: 27875974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.